Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Fish Physiol Biochem ; 49(1): 19-37, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36759400

ABSTRACT

Organic acids and their derivatives have been attributed to growth and well-being improvement in fish when supplemented in their diets. Therefore, this study was conducted to evaluate the ameliorative role of potassium formate (PF) in rohu Labeo rohita fingerlings. A total of 240 healthy rohu fingerlings (9.0 ± 0.5 g ± SE) were randomly divided into four equal groups in triplicates. Fish were fed with isonitrogenous feeds: PF10 (10 g PF/kg), PF20 (20 g PF/kg) and PF30 (30 g PF/kg). Feed without PF supplementation served as control. The results indicated that the specific growth rate (SGR) and feed conversion ratio (FCR) were significantly (p<0.05) higher in PF10. Total serum globulin content was found significantly (p<0.05) elevated in PF10 after the bacterial challenge. Non-specific lysozyme activity was significantly higher (p<0.05) after the challenge. The digestive protease enzyme activity was significantly (p<0.05) improved in PF10 treatment. Additionally, the digestive morphology of the treated fish was seen to be improved. Greater villus area, increased villus number, reduced lumen space in the hindgut, reduced vacuolation in mucosal folds and proliferation of goblet cells-like changes were observed in the PF-supplemented fish. Significantly (p<0.05), a higher relative percentage of survival (RPS) was observed in PF10 and PF20 treatments. The study revealed that the dietary supplementation of rohu fingerlings with lower levels of potassium formate could enhance the nutritional efficiency and physiological activities of rohu fingerlings. This study serves as a baseline for future research on the application of formic acid derivatives and other acidifiers in carp culture.


Subject(s)
Cyprinidae , Potassium, Dietary , Animals , Diet/veterinary , Dietary Supplements , Formates/pharmacology , Proteins , Animal Feed/analysis
2.
Biol Trace Elem Res ; 201(8): 4079-4092, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36374364

ABSTRACT

Functional trace elements and vitamins can boost immunity and anti-oxidative response in aquatic animals with effects on nutritional physiology. Nano-selenium (nano-Se) and vitamin C (VC) have been used as immunomodulators and antioxidants in fish feed. The present work was performed to determine the protective effects of diets supplemented with different combinations of nano-Se and VC on Nile tilapia (Oreochromis niloticus). Triplicate groups of 20 fish/tank (13.87 ± 0.10 g) were reared and fed with basal diet (control-T1) (without supplementation of nano-Se and VC) and three experimental diets as T2, T3, and T4 (100, 200, and 300 mg/kg VC respectively) with a pre-determined dose of nano-Se (1.0 mg/kg) for 90 days. Different immune indices, haemato-biochemical, and antioxidant activities were measured at the end of the first, second, and third months of feeding. The findings depicted that significantly (p < 0.05) higher growth was observed in T4. Red blood cells, white blood cells, and haemoglobin were found significantly (p < 0.05) higher in T4 for the third month. Serum biochemical-immunological indices (alkaline phosphatase, glucose, cholesterol, lysozyme, myeloperoxidase, total protein, albumin and globulin) followed the same trend. Furthermore, antioxidant assays such as catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and malondialdehyde were significantly (p < 0.05) improved in T4 for the third month. Significantly (p < 0.05) least cumulative mortality against Aeromonas hydrophila was obtained in the fish-fed diets incorporated with nano-Se and VC. Therefore, dietary supplementation with nano-Se and VC is noteworthy for improving growth, serum biochemical status, immune response, antioxidant status, and disease resistance.


Subject(s)
Cichlids , Selenium , Animals , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Aeromonas hydrophila/metabolism , Selenium/pharmacology , Selenium/metabolism , Dietary Supplements , Diet/veterinary , Vitamins , Disease Resistance , Oxidative Stress , Animal Feed/analysis
3.
Biol Trace Elem Res ; 199(8): 3073-3088, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33025518

ABSTRACT

In the present work, a total 180 monosex male Nile tilapia fingerlings (15.73 ± 0.05 g) were stocked in 150-l FRP tanks categorised into four diet groups with triplicate each and fed with dietary nano-selenium-supplemented diets at different concentration (T1-0, T2-0.5, T3-1.0 and T4-2.0 mg/kg of feed) for 90 days and different nutrition physiological parameters (feed utilization, haematology, serum biochemistry), immune response and antioxidant were analysed during pre- and post-challenge against Aeromonas hydrophila. The study results depicted that significantly (p < 0.05) better growth and feed utilization (absolute weight gain, specific growth rate, average daily gain, protein efficiency ratio, food conversion ratio) found in fish fed diet supplemented with 1 mg/kg of nano-Se. Significantly (p < 0.05) improved haematological (red blood cells, haemoglobin, white blood cells, platelets) and serum biochemical parameters (alanine aminotransferase, aspartate aminotransferase, glucose, cholesterol, triglycerides) observed in the same diet group. The same trend was followed by immune parameters (nitro blue tetrazolium, lysozyme activity, myeloperoxidase, total immunoglobulin). Also observed the statistically (p < 0.05) improved antioxidant activities (catalase, superoxide dismutase, glutathione peroxides, glutathione reductase, glutathione S-transferase, malondialdehyde, total antioxidant capacity) in the same diet group. Relative percent survival after the fishes challenged with A. hydrophila was significantly (p < 0.05) differed. The findings suggested that supplementation of 1 mg/kg of dietary nano-Se could able to ameliorate nutrition physiology, immunity, antioxidant activity and disease resistance in tilapia and proved that it may be one of the best element for fish farmers to increase the production in an economically feasible way.


Subject(s)
Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Selenium , Aeromonas hydrophila , Animal Feed/analysis , Animals , Antioxidants , Diet/veterinary , Dietary Supplements , Disease Resistance , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary , Male , Selenium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL