ABSTRACT
While the vast majority of research involving creatine supplementation has focused on skeletal muscle, there is a small body of accumulating research that has focused on creatine and the brain. Preliminary studies indicate that creatine supplementation (and guanidinoacetic acid; GAA) has the ability to increase brain creatine content in humans. Furthermore, creatine has shown some promise for attenuating symptoms of concussion, mild traumatic brain injury and depression but its effect on neurodegenerative diseases appears to be lacking. The purpose of this narrative review is to summarize the current body of research pertaining to creatine supplementation on total creatine and phophorylcreatine (PCr) content, explore GAA as an alternative or adjunct to creatine supplementation on brain creatine uptake, assess the impact of creatine on cognition with a focus on sleep deprivation, discuss the effects of creatine supplementation on a variety of neurological and mental health conditions, and outline recent advances on creatine supplementation as a neuroprotective supplement following traumatic brain injury or concussion.
Subject(s)
Creatine , Nervous System Physiological Phenomena , Brain , Creatine/pharmacology , Creatine/therapeutic use , Dietary Supplements , Humans , Muscle, SkeletalABSTRACT
Creatine (Cr) and phosphocreatine (PCr) are physiologically essential molecules for life, given they serve as rapid and localized support of energy- and mechanical-dependent processes. This evolutionary advantage is based on the action of creatine kinase (CK) isozymes that connect places of ATP synthesis with sites of ATP consumption (the CK/PCr system). Supplementation with creatine monohydrate (CrM) can enhance this system, resulting in well-known ergogenic effects and potential health or therapeutic benefits. In spite of our vast knowledge about these molecules, no integrative analysis of molecular mechanisms under a systems biology approach has been performed to date; thus, we aimed to perform for the first time a convergent functional genomics analysis to identify biological regulators mediating the effects of Cr supplementation in health and disease. A total of 35 differentially expressed genes were analyzed. We identified top-ranked pathways and biological processes mediating the effects of Cr supplementation. The impact of CrM on miRNAs merits more research. We also cautiously suggest two dose-response functional pathways (kinase- and ubiquitin-driven) for the regulation of the Cr uptake. Our functional enrichment analysis, the knowledge-based pathway reconstruction, and the identification of hub nodes provide meaningful information for future studies. This work contributes to a better understanding of the well-reported benefits of Cr in sports and its potential in health and disease conditions, although further clinical research is needed to validate the proposed mechanisms.
Subject(s)
Creatine/administration & dosage , Gene Expression Profiling , Genomics/methods , Physical Functional Performance , Animals , Creatine/metabolism , Creatine Kinase/metabolism , Dietary Supplements , Energy Metabolism , Genome-Wide Association Study , Humans , Mice , Mitogen-Activated Protein Kinases , Neurotransmitter Transport Proteins , Phosphocreatine/metabolism , Signal TransductionABSTRACT
Numerous health conditions affecting the musculoskeletal, cardiopulmonary, and nervous systems can result in physical dysfunction, impaired performance, muscle weakness, and disuse-induced atrophy. Due to its well-documented anabolic potential, creatine monohydrate has been investigated as a supplemental agent to mitigate the loss of muscle mass and function in a variety of acute and chronic conditions. A review of the literature was conducted to assess the current state of knowledge regarding the effects of creatine supplementation on rehabilitation from immobilization and injury, neurodegenerative diseases, cardiopulmonary disease, and other muscular disorders. Several of the findings are encouraging, showcasing creatine's potential efficacy as a supplemental agent via preservation of muscle mass, strength, and physical function; however, the results are not consistent. For multiple diseases, only a few creatine studies with small sample sizes have been published, making it difficult to draw definitive conclusions. Rationale for discordant findings is further complicated by differences in disease pathologies, intervention protocols, creatine dosing and duration, and patient population. While creatine supplementation demonstrates promise as a therapeutic aid, more research is needed to fill gaps in knowledge within medical rehabilitation.
Subject(s)
Creatine , Dietary Supplements , Rehabilitation , Adolescent , Adult , Child , Creatine/pharmacology , Creatine/therapeutic use , Female , Humans , Male , Middle Aged , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Muscular Diseases/drug therapy , Muscular Diseases/physiopathology , Muscular Diseases/rehabilitation , Young AdultABSTRACT
There is a robust and compelling body of evidence supporting the ergogenic and therapeutic role of creatine supplementation in muscle. Beyond these well-described effects and mechanisms, there is literature to suggest that creatine may also be beneficial to brain health (e.g., cognitive processing, brain function, and recovery from trauma). This is a growing field of research, and the purpose of this short review is to provide an update on the effects of creatine supplementation on brain health in humans. There is a potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by brain creatine deficits, which could be induced by acute stressors (e.g., exercise, sleep deprivation) or chronic, pathologic conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer's disease, depression). Despite this, the optimal creatine protocol able to increase brain creatine levels is still to be determined. Similarly, supplementation studies concomitantly assessing brain creatine and cognitive function are needed. Collectively, data available are promising and future research in the area is warranted.
Subject(s)
Brain/drug effects , Cognition/drug effects , Creatine/administration & dosage , Dietary Supplements , Aging , Alzheimer Disease/therapy , Blood-Brain Barrier/metabolism , Brain Concussion/therapy , Brain Injuries/therapy , Creatine/metabolism , Exercise , Female , Health Status , Humans , Male , Muscle, Skeletal/drug effects , Performance-Enhancing Substances/administration & dosage , Performance-Enhancing Substances/metabolismABSTRACT
Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.
Subject(s)
Creatine/adverse effects , Dietary Supplements/adverse effects , Adiposity/drug effects , Adolescent , Adult , Alopecia/chemically induced , Body Water/drug effects , Child , Creatine/administration & dosage , Creatine/chemistry , Creatine/metabolism , Dehydration/chemically induced , Female , Humans , Kidney/drug effects , Kidney Diseases/chemically induced , Male , Muscle Cramp/chemically induced , Muscle, Skeletal/drug effects , Sex Factors , Sports Nutritional Physiological Phenomena , Testosterone/metabolism , Testosterone Congeners/pharmacologyABSTRACT
The ergogenic and therapeutic effects of increasing muscle creatine by supplementation are well-recognized. It appears that similar benefits to brain function and cognitive processing may also be achieved with creatine supplementation, however research in this area is more limited, and important knowledge gaps remain. The purpose of this review is to provide a comprehensive overview of the current state of knowledge about the influence of creatine supplementation on brain function in healthy individuals. It appears that brain creatine is responsive to supplementation, however higher, or more prolonged dosing strategies than those typically used to increase muscle creatine, may be required to elicit an increase in brain creatine. The optimal dosing strategy to induce this response, is currently unknown, and there is an urgent need for studies investigating this. When considering the influence of supplementation strategies on cognitive processes, it appears that creatine is most likely to exert an influence in situations whereby cognitive processes are stressed, e.g. during sleep deprivation, experimental hypoxia, or during the performance of more complex, and thus more cognitively demanding tasks. Evidence exists indicating that increased brain creatine may be effective at reducing the severity of, or enhancing recovery from mild traumatic brain injury, however, only limited data in humans are available to verify this hypothesis, thus representing an exciting area for further research.
Subject(s)
Brain Injuries, Traumatic/drug therapy , Brain/drug effects , Cognition/drug effects , Creatine/pharmacology , Performance-Enhancing Substances/pharmacology , Brain Chemistry/drug effects , Dietary Supplements , Humans , Muscle, Skeletal/drug effectsABSTRACT
Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition program. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including the management of micronutrient deficiencies, supply of convenient forms of energy and macronutrients, and provision of direct benefits to performance or indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can offer benefits to the athlete, but others may be harmful to the athlete's health, performance, and/or livelihood and reputation if an anti-doping rule violation results. A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome, and habitual diet. Supplements intended to enhance performance should be thoroughly trialed in training or simulated competition before implementation in competition. Inadvertent ingestion of substances prohibited under the anti-doping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete's health and awareness of the potential for harm must be paramount, and expert professional opinion and assistance is strongly advised before embarking on supplement use.
Subject(s)
Athletes , Athletic Performance/physiology , Dietary Supplements , Sports Nutritional Physiological Phenomena , Consensus , Doping in Sports , Guidelines as Topic , Humans , Nutritional Requirements , Performance-Enhancing SubstancesABSTRACT
Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition programme. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including (1) the management of micronutrient deficiencies, (2) supply of convenient forms of energy and macronutrients, and (3) provision of direct benefits to performance or (4) indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can benefit the athlete, but others may harm the athlete's health, performance, and/or livelihood and reputation (if an antidoping rule violation results). A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome and habitual diet. Supplements intended to enhance performance should be thoroughly trialled in training or simulated competition before being used in competition. Inadvertent ingestion of substances prohibited under the antidoping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete's health and awareness of the potential for harm must be paramount; expert professional opinion and assistance is strongly advised before an athlete embarks on supplement use.
Subject(s)
Athletes , Athletic Performance , Dietary Supplements , Sports Nutritional Physiological Phenomena , Consensus , Diet , HumansABSTRACT
Some dietary supplements are recommended to athletes based on data that supports improved exercise performance. Other dietary supplements are not ergogenic per se, but may improve health, adaptation to exercise, or recovery from injury, and so could help athletes to train and/or compete more effectively. In this review, we describe several dietary supplements that may improve health, exercise adaptation, or recovery. Creatine monohydrate may improve recovery from and adaptation to intense training, recovery from periods of injury with extreme inactivity, cognitive processing, and reduce severity of or enhance recovery from mild traumatic brain injury (mTBI). Omega 3-fatty acid supplementation may also reduce severity of or enhance recovery from mTBI. Replenishment of vitamin D insufficiency or deficiency will likely improve some aspects of immune, bone, and muscle health. Probiotic supplementation can reduce the incidence, duration, and severity of upper respiratory tract infection, which may indirectly improve training or competitive performance. Preliminary data show that gelatin and/or collagen may improve connective tissue health. Some anti-inflammatory supplements, such as curcumin or tart cherry juice, may reduce inflammation and possibly delayed onset muscle soreness (DOMS). Beta-hydroxy beta-methylbutyrate (HMB) does not consistently increase strength and/or lean mass or reduce markers of muscle damage, but more research on recovery from injury that includes periods of extreme inactivity is needed. Several dietary supplements, including creatine monohydrate, omega 3-fatty acids, vitamin D, probiotics, gelatin, and curcumin/tart cherry juice could help athletes train and/or compete more effectively.
Subject(s)
Adaptation, Physiological , Dietary Supplements , Sports Nutritional Physiological Phenomena , Athletes , Athletic Injuries , Humans , Inflammation , Myalgia/drug therapy , Recovery of FunctionABSTRACT
Team sport athletes face a variety of nutritional challenges related to recovery during the competitive season. The purpose of this article is to review nutrition strategies related to muscle regeneration, glycogen restoration, fatigue, physical and immune health, and preparation for subsequent training bouts and competitions. Given the limited opportunities to recover between training bouts and games throughout the competitive season, athletes must be deliberate in their recovery strategy. Foundational components of recovery related to protein, carbohydrates, and fluid have been extensively reviewed and accepted. Micronutrients and supplements that may be efficacious for promoting recovery include vitamin D, omega-3 polyunsaturated fatty acids, creatine, collagen/vitamin C, and antioxidants. Curcumin and bromelain may also provide a recovery benefit during the competitive season but future research is warranted prior to incorporating supplemental dosages into the athlete's diet. Air travel poses nutritional challenges related to nutrient timing and quality. Incorporating strategies to consume efficacious micronutrients and ingredients is necessary to support athlete recovery in season.
Subject(s)
Athletes , Dietary Carbohydrates/administration & dosage , Dietary Supplements , Energy Metabolism/physiology , Glycogen/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/diet therapy , Dietary Carbohydrates/metabolism , Dietary Fats/metabolism , Dietary Proteins/metabolism , Humans , Muscle Fatigue/physiology , Nutritional Physiological Phenomena , Nutritional Requirements , Seasons , SportsABSTRACT
This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline.
Subject(s)
Aging/metabolism , Bone and Bones/metabolism , Brain/metabolism , Creatine , Dietary Supplements , Muscle, Skeletal/metabolism , Aged, 80 and over , Aging/drug effects , Creatine/metabolism , Creatine/pharmacology , Female , Humans , Male , Physical Endurance/drug effects , Physical Endurance/physiologyABSTRACT
There is an extensive and still growing body of the literature supporting the efficacy of creatine (Cr) supplementation. In sports, creatine has been recognized as the most effective nutritional supplement in enhancing exercise tolerance, muscle strength and lean body mass. From a clinical perspective, the application of Cr supplementation is indeed exciting. Evidences of benefits from this supplement have been reported in a broad range of diseases, including myopathies, neurodegenerative disorders, cancer, rheumatic diseases, and type 2 diabetes. In addition, after hundreds of published studies and millions of exposures creatine supplementation maintains an excellent safety profile. Thus, we contend that the widespread application of this supplement may benefit athletes, elderly people and various patient populations. In this narrative review, we aimed to summarize both the ergogenic and therapeutic effects of Cr supplementation. Furthermore, we reviewed the impact of Cr supplementation on kidney function.
Subject(s)
Creatine/pharmacology , Dietary Supplements , Performance-Enhancing Substances/pharmacology , Animals , Brain Diseases/drug therapy , Creatine/metabolism , Creatine/therapeutic use , Humans , Kidney/drug effects , Kidney/physiopathology , Musculoskeletal Diseases/drug therapy , Performance-Enhancing Substances/metabolism , Performance-Enhancing Substances/therapeutic use , Resistance Training , SportsABSTRACT
The ingestion of the dietary supplement creatine (about 20 g/day for 5 days or about 2 g/day for 30 days) results in increased skeletal muscle creatine and phosphocreatine. Subsequently, the performance of high-intensity exercise tasks, which rely heavily on the creatine-phosphocreatine energy system, is enhanced. The well documented benefits of creatine supplementation in young adults, including increased lean body mass, increased strength, and enhanced fatigue resistance are particularly important to older adults. With aging and reduced physical activity, there are decreases in muscle creatine, muscle mass, bone density, and strength. However, there is evidence that creatine ingestion may reverse these changes, and subsequently improve activities of daily living. Several groups have demonstrated that in older adults, short-term high-dose creatine supplementation, independent of exercise training, increases body mass, enhances fatigue resistance, increases muscle strength, and improves the performance of activities of daily living. Similarly, in older adults, concurrent creatine supplementation and resistance training increase lean body mass, enhance fatigue resistance, increase muscle strength, and improve performance of activities of daily living to a greater extent than resistance training alone. Additionally, creatine supplementation plus resistance training results in a greater increase in bone mineral density than resistance training alone. Higher brain creatine is associated with improved neuropsychological performance, and recently, creatine supplementation has been shown to increase brain creatine and phosphocreatine. Subsequent studies have demonstrated that cognitive processing, that is either experimentally (following sleep deprivation) or naturally (due to aging) impaired, can be improved with creatine supplementation. Creatine is an inexpensive and safe dietary supplement that has both peripheral and central effects. The benefits afforded to older adults through creatine ingestion are substantial, can improve quality of life, and ultimately may reduce the disease burden associated with sarcopenia and cognitive dysfunction.
Subject(s)
Aging/drug effects , Cognition/drug effects , Creatine/administration & dosage , Creatine/pharmacology , Aging/physiology , Cognition/physiology , Dietary Supplements , HumansABSTRACT
OBJECTIVE: We examined the effects of 6 wk of low-dose creatine supplementation on body composition, muscle function, and body creatine retention. METHODS: Twenty healthy men and women (21 ± 2 y old) were randomized to receive creatine (0.03 g · kg(-1) · d(-1); n = 10, 4 women) or placebo (n = 10, 4 women) for 6 wk in a double-blind placebo-controlled fashion. Participants were tested on two occasions before supplementation to establish a reliable baseline, and then were retested after supplementation. Testing included body composition, maximal strength (three-repetition maximal concentric knee extension at 180 degrees/s), muscle fatigue (five sets of 30 concentric knee extensions at 180 degrees/s), and plasma creatine concentration. RESULTS: There were no significant differences in body mass, fat-free mass, fat mass, body fat percentage, total body water, or maximal strength in either group from before to after supplementation (all P > 0.05). After supplementation, plasma creatine increased significantly in the creatine group (+182%, P = 0.03), with no difference in the placebo group. Compared with baseline values, creatine-supplemented volunteers were more resistant to fatigue during sets 2 (7%), 3 (9%), 4 (9%), and 5 (11%) (all P < 0.05). In placebo-supplemented participants, there was no improvement in fatigue resistance during sets 2 (0%), 3 (1%), 4 (0%), and 5 (-1%) (all P > 0.05). CONCLUSION: Ingesting a low dose (≈2.3 g/d) of creatine for 6 wk significantly increased plasma creatine concentration and enhanced resistance to fatigue during repeated bouts of high-intensity contractions.
Subject(s)
Creatine/pharmacology , Dietary Supplements , Muscle Fatigue/drug effects , Muscle, Skeletal/drug effects , Adult , Body Weight/drug effects , Creatine/blood , Double-Blind Method , Female , Humans , Male , Muscle Contraction , Muscle, Skeletal/physiology , Young AdultABSTRACT
Creatine supplementation has been reported to improve certain aspects of cognitive and psychomotor function in older individuals and in young subjects following 24 and 36 h of sleep deprivation. However, the effects of creatine supplementation on cognitive processing and psychomotor performance in non-sleep deprived young adults have not been assessed with a comprehensive battery of neurocognitive tests. The primary objective of this study was to examine the effects of creatine supplementation on cognitive processing and psychomotor performance in young adults. Twenty-two subjects (21+/-2 yr) ingested creatine (0.03 g/kg/day) or placebo for 6 weeks in a double-blind placebo-controlled fashion. Subjects completed a battery of neurocognitive tests pre- and post-supplementation, including: simple reaction time (RT), code substitution (CS), code substitution delayed (CSD), logical reasoning symbolic (LRS), mathematical processing (MP), running memory (RM), and Sternberg memory recall (MR). There were no significant effects of group, no significant effects of time, and no significant group by time interactions for RT, CS, CSD, LRS, MP, RM, and MR (all p>0.05), indicating that there were no differences between creatine and placebo supplemented groups at any time. These results suggest that six weeks of creatine supplementation (0.03/g/kg/day) does not improve cognitive processing in non-sleep deprived young adults. Potentially, creatine supplementation only improves cognitive processing and psychomotor performance in individuals who have impaired cognitive processing abilities.
Subject(s)
Cognition/drug effects , Creatine/administration & dosage , Dietary Supplements , Adult , Analysis of Variance , Body Mass Index , Double-Blind Method , Female , Humans , Male , Memory/drug effects , Neuropsychological Tests , Psychomotor Performance/drug effects , Psychomotor Performance/physiologyABSTRACT
Previous studies have shown that creatine supplementation reduces muscle damage and inflammation following running but not following high-force, eccentric exercise. Although the mechanical strain placed on muscle fibers during high-force, eccentric exercise may be too overwhelming for creatine to exert any protective effect, creatine supplementation may protect skeletal muscle stressed by a resistance training challenge that is more hypoxic in nature. The purpose of this study was to examine the effects of short-term creatine supplementation on markers of muscle damage (i.e., strength, range of motion, muscle soreness, muscle serum protein activity, C-reactive protein) to determine whether creatine supplementation offers protective effects on skeletal muscle following a hypoxic resistance exercise test. Twenty-two healthy, weight-trained men (19-27 years) ingested either creatine or a placebo for 10 days. Following 5 days of supplementation, subjects performed a squat exercise protocol (5 sets of 15-20 repetitions at 50% of 1 repetition maximum [1RM]). Assessments of creatine kinase (CK) and lactate dehydrogenase activity, high-sensitivity C-reactive protein, maximal strength, range of motion (ROM), and muscle soreness (SOR) with movement and palpation were conducted pre-exercise and during a 5-day follow up. Following the exercise test, maximal strength and ROM decreased, whereas SOR and CK increased. Creatine and placebo-supplemented subjects experienced significant decreases in maximal strength (creatine: 13.4 kg, placebo: 17.5 kg) and ROM (creatine: 2.4 degrees , placebo: 3.0 degrees ) immediately postexercise, with no difference between groups. Following the exercise test, there were significant increases in SOR with movement and palpation (p < 0.05 at 24, 48, and 72 hours postexercise), and CK activity (p < 0.05 at 24 and 48 hours postexercise), with no differences between groups at any time. These data suggest that oral creatine supplementation does not reduce skeletal muscle damage or enhance recovery following a hypoxic resistance exercise challenge.
Subject(s)
Athletic Injuries/diet therapy , Creatine/administration & dosage , Dietary Supplements , Muscle, Skeletal/injuries , Adult , Athletic Injuries/complications , Athletic Injuries/metabolism , Biomarkers/blood , C-Reactive Protein/metabolism , Creatine Kinase/blood , Exercise/physiology , Humans , L-Lactate Dehydrogenase/blood , Male , Muscle Strength , Muscle, Skeletal/metabolism , Pain/etiology , Range of Motion, Articular , Recovery of Function , Treatment OutcomeABSTRACT
The literature on creatine supplementation supporting its efficacy has grown rapidly and has included studies in both healthy volunteers and patient populations. However, the first rule in the development of therapeutic agents is safety. Creatine is well-tolerated in most individuals in short-term studies. However, isolated reports suggest creatine may be associated with various side effects affecting several organ systems including skeletal muscle, the kidney and the gastrointestinal tract. The majority of clinical studies fail to find an increased incidence of side effects with creatine supplementation. To date, studies have not found clinically significant deviations from normal values in renal, hepatic, cardiac or muscle function. Few data are available on the long-term consequences of creatine supplementation.
Subject(s)
Creatine/administration & dosage , Creatine/adverse effects , Dietary Supplements/adverse effects , Animals , HumansABSTRACT
A large number of studies have been published on creatine supplementation over the last decade. Many studies show that creatine supplementation in conjunction with resistance training augments gains in muscle strength and size. The underlying physiological mechanism(s) to explain this ergogenic effect remain unclear. Increases in muscle fiber hypertrophy and myosin heavy chain expression have been observed with creatine supplementation. Creatine supplementation increases acute weightlifting performance and training volume, which may allow for greater overload and adaptations to training. Creatine supplementation may also induce a cellular swelling in muscle cells, which in turn may affect carbohydrate and protein metabolism. Several studies point to the conclusion that elevated intramuscular creatine can enhance glycogen levels but an effect on protein synthesis/degradation has not been consistently detected. As expected there is a distribution of responses to creatine supplementation that can be largely explained by the degree of creatine uptake into muscle. Thus, there is wide interest in methods to maximize muscle creatine levels. A carbohydrate or carbohydrate/protein-induced insulin response appears to benefit creatine uptake. In summary, the predominance of research indicates that creatine supplementation represents a safe, effective, and legal method to enhance muscle size and strength responses to resistance training.
Subject(s)
Creatine/administration & dosage , Sports/physiology , Creatine/metabolism , Dietary Supplements , Exercise/physiology , Glycogen/metabolism , Humans , Muscle, Skeletal/drug effects , Muscle, Skeletal/growth & development , Muscle, Skeletal/physiologyABSTRACT
The purpose of this case study was to examine the effects of repeated creatine administration on muscle phosphocreatine, plasma creatine, and urine creatine. One male subject (age, 32 years; body mass, 78.4 kg; height, 160 cm; resistance training experience, 15 years) ingested creatine (20 g.d(-1) for 5 days) during 2 bouts separated by a 30-day washout period. Muscle phosphocreatine was measured before and after supplementation. On day 1 of supplementation, blood samples were taken immediately before and hourly for 5 hours following ingestion of 5 g of creatine, and a pharmacokinetic analysis of plasma creatine was conducted. Twenty-four-hour urine collections were conducted before and for 5 days during supplementation. Muscle phosphocreatine increased 45% following the first supplementation bout, decreased 22% during the 30-day washout period, and increased 25% following the second bout. There were no meaningful differences in plasma creatine pharmacokinetic parameters between bouts 1 and 2. Total urine creatine losses during supplementation were 63.2 and 63.4 g during bouts 1 and 2, respectively. The major findings were that (a) a 30-day washout period is insufficient time for muscle phosphocreatine to return to baseline following creatine supplementation but is sufficient time for plasma and urine creatine levels to return to presupplementation values; (b) postsupplementation muscle phosphocreatine levels were similar following bouts 1 and 2 despite 23% higher presupplementation muscle phosphocreatine before bout 2; and (c) the increased muscle phosphocreatine that persisted throughout the 30-day washout period corresponded with maintenance of increased body mass (+2.0 kg). Athletes should be aware that the washout period for muscle creatine to return to baseline levels may be longer than 30 days in some individuals, and this may be accompanied by a persistent increase in body mass.