Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Undersea Hyperb Med ; 39(4): 829-36, 2012.
Article in English | MEDLINE | ID: mdl-22908839

ABSTRACT

INTRODUCTION: Respiratory muscle training against resistance (RRMT) increases respiratory muscle strength and endurance as well as underwater swimming endurance. We hypothesized that the latter is a result of RRMT reducing the high energy cost of breathing at depth. METHODS: Eight subjects breathed air in a hyperbaric chamber at 55 fsw, both before and after RRMT. They rested for 10 minutes, cycled on an ergometer for 10 minutes (100 W), rested for 10 minutes, and then, while still at rest, they voluntarily mimicked the breathing pattern recorded during the exercise (isocapnic simulated exercise ventilation, ISEV). RESULTS: Post-RRMT values of V(E) at rest, exercise and ISEV were not different from those recorded pre-RRMT. Pre-RRMT minute-ventilation (V(E)) during ISEV was not different from the exercise ventilation (49.98 +/- 10.41 vs. 47.74 +/- 8.44 L/minute). The end-tidal PCO2 during ISEV and exercise were not different (44.26 +/- 2.54 vs. 44.49 +/- 4.49 mmHg) or affected by RRMT. Oxygen uptake (VO2) was 0.32 +/- 0.08 L/ minute at rest, 1.78 +/- 0.15 during exercise pre-RRMT, and not different post-RRMT. During ISEV, VO2 decreased significantly from pre-RRMT to post-RRMT (0.46 +/- 0.06 vs. 0.36 +/- 0.11 L/minute). Post-RRMT delta VO2/delta V(E) was significantly lower during ISEV than pre-RRMT (0.0094 +/- 0.0021 L/L vs. 0.0074 +/- 0.0023 L/L). CONCLUSION: RRMT significantly reduced the energy cost of ventilation, measured as delta VO2/delta V(E) during ISEV, at a depth of 55 fsw. Whether this change was due to reduced work of breathing and/or increased efficiency of the respiratory muscles remains to be determined.


Subject(s)
Breathing Exercises , Energy Metabolism/physiology , Oxygen Consumption/physiology , Respiratory Muscles/physiology , Adult , Atmosphere Exposure Chambers , Breath Tests/methods , Electrocardiography , Humans , Male , Respiratory Function Tests
2.
Undersea Hyperb Med ; 35(3): 185-96, 2008.
Article in English | MEDLINE | ID: mdl-18619114

ABSTRACT

Respiratory muscle training (RMT) has been shown to improve divers swimming endurance at 4 feet of depth; however, its effectiveness at greater depths, where gas density and the work of breathing are substantially elevated has not been studied. The purpose of this study was to examine the effects of resistance respiratory muscle training (RRMT) on respiratory function and swimming endurance at 55 feet of depth (270.5 kPa). Nine male subjects (25.9 +/- 6.8 years) performed RRMT for 30 min/day, 5 d/ wk, for 4 wks. Pre- and Post RRMT, subjects swam against a pre-determined load (70% VO2 max) until exhausted. As indices of respiratory muscle strength, maximal inspiratory and expiratory pressures were measured before and immediately following the swims pre- and post-RRMT. These measurements showed that ventilation was significantly lower during the swims and, at comparable swim duration, that the respiratory muscles were considerably less fatigued following RRMT. The reduced ventilation was due to a lower breathing frequency following RRMT. The ventilatory changes following RRMT coincided with significantly increased swimming time to exhaustion (approximately 60%, 31.3 +/- 11.6 vs. 49.9 +/- 16.0 min, pre- vs. post-RRMT, p < 0.05). These results suggest respiratory muscle fatigue limits swimming endurance at depth as well as at the surface and RRMT improves performance.


Subject(s)
Breathing Exercises , Diving/physiology , Physical Endurance/physiology , Respiratory Muscles/physiology , Swimming/physiology , Adult , Carbon Dioxide/metabolism , Heart Rate/physiology , Humans , Male , Muscle Fatigue/physiology , Oxygen Consumption/physiology , Respiratory Function Tests
SELECTION OF CITATIONS
SEARCH DETAIL