Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Am J Clin Nutr ; 118(3): 579-590, 2023 09.
Article in English | MEDLINE | ID: mdl-37454758

ABSTRACT

BACKGROUND: Long-chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are closely related to neovascular eye diseases. However, the clinical significance of their oxylipins in retinal vein occlusion (RVO) remains inconclusive. OBJECTIVES: This case-control study aimed to explore metabolomic profiles of LCPUFA oxidation in RVO and to identify potential indicators for diagnosis and pathologic progression. METHODS: The plasma concentrations of ω-3 (n-3) and ω-6 (n-6) LCPUFA and their oxylipins in 44 adults with RVO and 36 normal controls were analyzed using ultraperformance liquid chromatography tandem mass spectrometry. Univariate analysis combined with principal component and orthogonal projections to latent structure discriminant analysis was used to screen differential metabolites. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of 5-oxo-eicosatetraenoic acids (ETE) on angiogenesis ex vivo. Tubule formation and wound healing assays were performed to verify its effects on human retinal microvascular endothelial cell functions. RESULTS: Higher ω-6 and lower ω-3 LCPUFA plasma concentrations were measured in the adults with RVO compared with control (odds ratio [OR]: 2.34; 95% confidence interval [CI]: 1.42, 3.86; P < 0.001; OR: 0.28; 95% CI: 0.15, 0.51; P < 0.001). Metabolomic analysis revealed 20 LCPUFA and their oxylipins dysregulated in RVO, including increased arachidonic acid (ω-6, OR: 1.85; 95% CI: 1.18, 2.90; P < 0.001) and its lipoxygenase product 5-oxo-ETE (OR: 11.76; 95% CI: 3.73, 37.11; P < 0.001), as well as decreased docosahexaenoic acid (ω-3, OR: 0.13; 95% CI: 0.05, 0.33; P < 0.001). Interestingly, 5-oxo-ETE was downregulated in ischemic compared with nonischemic central RVO. Exogenous 5-oxo-ETE attenuated aortic ring and choroidal explant sprouting and inhibited tubule formation and migration of human retinal microvascular endothelial cells in a dose-dependent manner, possibly via suppressing the vascular endothelial growth factor signaling pathway. CONCLUSIONS: The plasma concentrations of ω-6 and ω-3 LCPUFA and their oxylipins were associated with RVO. The ω-6 LCPUFA-derived metabolite 5-oxo-ETE was a potential marker of RVO development and progression.


Subject(s)
Fatty Acids, Omega-3 , Retinal Vein Occlusion , Humans , Adult , Endothelial Cells/metabolism , Case-Control Studies , Oxylipins , Vascular Endothelial Growth Factor A
2.
Metabolism ; 134: 155266, 2022 09.
Article in English | MEDLINE | ID: mdl-35868524

ABSTRACT

INTRODUCTION: Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω-3 (and ω-6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω-6 LCPUFA and anti-angiogenic ones from ω-3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω-6 and ω-3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω-3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. OBJECTIVES: To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. METHODS: The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. RESULTS: CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω-6 and ω-3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω-6, ω-3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω-3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. CONCLUSIONS: CYP2J2 inhibition augmented the inhibitory effect of ω-3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD.


Subject(s)
Choroidal Neovascularization , Fatty Acids, Omega-3 , Macular Degeneration , Animals , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/prevention & control , Cytochrome P-450 CYP2C8/metabolism , Disease Models, Animal , Docosahexaenoic Acids , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Unsaturated/therapeutic use , Flunarizine/therapeutic use , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Mice , Mice, Inbred C57BL , NADPH-Ferrihemoprotein Reductase
SELECTION OF CITATIONS
SEARCH DETAIL