Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
World J Gastroenterol ; 17(23): 2848-54, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21734793

ABSTRACT

AIM: To observe the effects of sargentgloryvine stem extracts (SSE) on the hepatoma cell line HepG-2 in vitro and in vivo and determine its mechanisms of action. METHODS: Cultured HepG-2 cells treated with SSE were analysed by 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-Diphenyltetrazolium bromide and clone formation assay. The cell cycle and apoptosis analysis were conducted by flow cytometric, TdT-Mediated dUTP Nick End Labeling and acridine orange/ethidium bromide staining methods, and protein expression was examined by both reverse transcriptase-polymerase chain reaction and Western blotting. The pathological changes of the tumor cells were observed by haematoxylin and eosin staining. Tumor growth inhibition and side effects were determined in a xenograft mouse model. RESULTS: SSE treatment could not only inhibit HepG-2 cell proliferation in a dose- and time-dependent manner but also induce apoptosis and cell cycle arrest at the S phase. The number of colonies formed by SSE-treated tumor cells was fewer than that of the controls (P < 0.05). SSE induced caspase-dependent apoptosis accompanied by a significant decrease in Bcl-xl and Mcl-1 and elevation of Bak expression (P < 0.05). Tumor necrosis factor α in the xenograft tumor tissue and the liver functions of SSE-treated mice showed no significant changes at week 8 compared with the control group (P > 0.05). Systemic administration of SSE could inhibit the HepG-2 xenograft tumor growth with no obvious toxic side effects on normal tissues. CONCLUSION: SSE can induce apoptosis of HepG-2 cells in vitro and in vivo through decreasing expression of Bcl-xl and Mcl-1 and increasing expression of Bax.


Subject(s)
Hep G2 Cells/drug effects , Plant Extracts/pharmacology , Plant Stems/chemistry , Animals , Apoptosis/drug effects , Caspases/metabolism , Cytochromes c/metabolism , Gene Expression/drug effects , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Xenograft Model Antitumor Assays , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolism
2.
Med Oncol ; 28(4): 1225-54, 2011 Dec.
Article in English | MEDLINE | ID: mdl-20458559

ABSTRACT

Arsenic trioxide (As2O3), a component of traditional Chinese medicine, has been used successfully for the treatment of acute promyelocytic leukemia (APL), and As2O3 is of potential therapeutic value for the treatment of other promyelocytic malignancies and some solid tumors including breast cancer. However, the precise molecular mechanisms through which As2O3 induces cell cycle arrest and apoptosis in solid tumors have not been clearly understood. The goal of our study is to gain insight into the general biological processes and molecular functions that are altered by As2O3 treatment in MCF-7 breast cancer cells and to identify the key signaling processes that are involved in the regulation of these physiological effects. In the present study, MCF-7 cells were treated with 5 µM As2O3, and the differential gene expression was then analyzed by DNA microarray. The results showed that As2O3 treatment changed the expression level of several genes that involved in cell cycle regulation, signal transduction, and apoptosis. Notably, As2O3 treatment increased the mRNA and protein levels of the cell cycle inhibitory proteins, p21 and p27. Interestingly, knocking down p21 or p27 individually did not alter As2O3-induced apoptosis and cell cycle arrest; however, the simultaneous down-regulation of both p21 and p27 resulted in attenuating of G1, G2/M arrest and reduction in apoptosis, thus indicating that p21 and p27 as the primary molecular targets of As2O3 against breast cancer. Overall, our results provide new insights into As2O3-related signaling activities, which may facilitate the development of As2O3-based anticancer strategies and/or combination therapies against solid tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenicals/pharmacology , Breast Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Gene Expression/drug effects , Oxides/pharmacology , Apoptosis/genetics , Arsenic Trioxide , Blotting, Western , Cell Line, Tumor , Cell Separation , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Cyclin-Dependent Kinase Inhibitor p27/biosynthesis , Female , Flow Cytometry , Genes, cdc , Humans , In Situ Nick-End Labeling , Oligonucleotide Array Sequence Analysis , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transfection
3.
Cancer Biol Ther ; 7(6): 902-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18367875

ABSTRACT

The green tea polyphenol (GTP) has been shown to possess cancer therapeutic effect through induction of apoptosis, while the underlying molecular mechanism of its anticancer effect is not well understood. PUMA (p53-upregulated modulator of apoptosis) plays an important role in the process of apoptosis induction in a variety of human tumor cells in both p53-dependent and -independent manners. However, whether or not PUMA is involved in the process of GTP-induced apoptosis in cancer cells has not been well reported. In the present study, we treated HT-29 (mutant p53) and LoVo (wild type p53) human colorectal cancer cells with different concentrations of GTP, which led to repression of cell proliferation and induction of apoptosis in both cell lines. Meanwhile, we also observed increased PUMA expression and decreased ERK (extracellular signal-regulated kinase) activity in both of GTP-treated tumor cell lines carrying different genotypes of p53. To determine the role of PUMA in GTP-induced apoptosis, we used stable RNA interference (RNAi) to suppress PUMA expression. As a result, apoptosis was abrogated in response to GTP-treatment. We also found that suppression of ERK activity by either RNAi or its specific inhibitor significantly enhanced GTP-induced PUMA expression. All these results indicate that PUMA plays a critical role in GTP-induced apoptosis pathway in human colorectal cancer cells and can be regulated partly by ERK inactivation. Demonstration of the molecular mechanism involved in the anti-cancer effect of GTP may be useful in the therapeutic target selection for p53 deficient colorectal cancer.


Subject(s)
Apoptosis Regulatory Proteins/biosynthesis , Apoptosis , Colorectal Neoplasms/metabolism , Flavonoids/pharmacology , Gene Expression Regulation, Neoplastic , Phenols/pharmacology , Proto-Oncogene Proteins/biosynthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Guanosine Triphosphate/chemistry , Humans , Phenotype , Polyphenols , RNA, Small Interfering/metabolism , Tea , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL