Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Small ; 19(14): e2206174, 2023 04.
Article in English | MEDLINE | ID: mdl-36651135

ABSTRACT

Multidrug resistance (MDR) and metastasis in cancer have become increasingly serious problems since antitumor efficiency is greatly restricted by a single therapeutic modality and the insensitive tumor microenvironment (TME). Herein, metal-phenolic network-functionalized nanoparticles (t-P@TFP NPs) are designed to realize multiple therapeutic modalities and reshape the TME from insensitive to sensitive under multimodal imaging monitoring. After a single irradiation, a near-infrared laser-activated multistage reaction occurs. t-P@TFP NPs trigger the phase transition of perfluoropentane (PFP) to release tannic acid (TA)/ferric ion (Fe3+ )-coated paclitaxel (PTX) and cause hyperthermia in the tumor region to efficiently kill cancer cells. Additionally, PTX is released after the disassembly of the TA-Fe3+ film by the abundant adenosine triphosphate (ATP) in the malignant tumor, which concurrently inhibits ATP-dependent drug efflux to improve sensitivity to chemotherapeutic agents. Furthermore, hyperthermia-induced immunogenic cell death (ICD) transforms "cold" tumors into "hot" tumors with the assistance of PD-1/PD-L1 blockade to evoke antitumor immunogenicity. This work carefully reveals the mechanisms underlying the abilities of these multifunctional NPs, providing new insights into combating the proliferation and metastasis of multidrug-resistant tumors.


Subject(s)
Nanoparticles , Neoplasms , Humans , Phototherapy/methods , Paclitaxel/pharmacology , Neoplasms/therapy , Drug Delivery Systems/methods , Drug Resistance, Multiple , Metals , Cell Line, Tumor , Tumor Microenvironment
2.
ACS Appl Mater Interfaces ; 15(1): 1784-1797, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36580421

ABSTRACT

Photothermal therapy (PTT), by converting light to thermal energy, has become a novel and noninvasive technique for tumor thermal ablation in clinical practice. However, as a result of phagocytosis of reticuloendothelial cells, current photothermal agents (PTAs) derived from exogenous materials suffer from incompetent tumor targeting and brief internal circulation time. The resulting poor accumulation of PTAs in the target area severely reduces the efficacy of PTT. In addition, the potential toxicity of PTAs, excessive laser exposure, and possibilities of tumor recurrence and metastasis following PTT are still intractable problems that severely influence patients' quality of life. Herein, a biomimetic pH-responsive nanoprobe was prepared via cancer cell membrane coating polydopamine (PDA)-CaCO3 nanoparticles (CPCaNPs) for photoacoustic (PA)/ultrasonic (US)/thermal imaging-guided PTT. When CPCaNPs targeted and infiltrated into the tumor's acidic microenvironment, the decomposed CO2 bubbles from homologous targeting CPCaNPs enhanced ultrasonic (US) signals obviously. At the same time, the PDA of CPCaNPs not only performed efficient PTT of primary tumors but also generated photoacoustic (PA) signals. In addition, an immune checkpoint pathway blockade was combined, which inhibited tumor recurrence and metastasis significantly and improved the immunosuppressive microenvironment after PTT to a large extent. Thus, these proposed biomimetic pH-responsive CPCaNPs provide a promising strategy for precise PTT immunotherapy under the intelligent guidance of PA/US/thermal imaging and show great potential for clinical translation.


Subject(s)
Nanoparticles , Neoplasms , Humans , Phototherapy/methods , Cell Line, Tumor , Biomimetics , Neoplasm Recurrence, Local , Quality of Life , Neoplasms/therapy , Neoplasms/drug therapy , Nanoparticles/therapeutic use , Multimodal Imaging , Immunotherapy , Hydrogen-Ion Concentration , Tumor Microenvironment
3.
Article in English | MEDLINE | ID: mdl-36408346

ABSTRACT

Objective: The objective is to explore the surgical index, postoperative complications, recovery speed, and prognosis of Stanford type A aortic dissection (AD) compared with traditional 'Sun's operation. Methods: One hundred patients with Stanford type A AD treated from February 2018 to February 2021 were enrolled in our hospital. Patients were randomly divided into control and research group. The former group underwent traditional Sun's surgery, and the latter group underwent combined debranching surgery. The general data, surgical indexes, total amount of blood transfusion, renal function 72 hours after operation, postoperative indexes during hospitalization, and follow-up results after discharge were compared between the two groups. Results: The CPB time, ACC time, operation time, and postoperative total drainage volume of the study group were all lower than those of the control group, and the intraoperative urine volume of the study group was higher than that of the control group (P < 0.05). The total amount of RBC infused in the study group was higher than that in the control group, while the total amount of PLT, cryoprecipitate, and plasma infusion in the study group was lower than that in the control group (P < 0.05). At 72 hours after operation, BUN, Scr, and UA in the study group were significantly lower than those in the control group (P < 0.05). The number of the secondary intubation, hemodialysis, neurological complications, and deaths in the study group was significantly lower than that in the control group (P < 0.05). Conclusion: Both Sun's operation and branch removal are more effective treatment methods, and the two different surgical methods have different indications, advantages, and disadvantages, so different surgical methods can be chosen according to different conditions for Stanford AD. The possible postoperative complications should be comprehensively analyzed in the clinical work in order to reduce the occurrence of postoperative complications and improve the cure rate.

4.
Small ; 18(13): e2107809, 2022 04.
Article in English | MEDLINE | ID: mdl-35143709

ABSTRACT

The efficacy of immune checkpoint inhibition in inducing death of cancer cells is affected by the immunosuppressive "cold" tumor microenvironment, which results in a poor response by the patient's antitumor immune system. However, the immunomodulatory effects of immunogenic cell death in response to irritation by heat energy and reactive oxygen species (ROS) can switch the tumor microenvironment from "cold" to "hot." This study has developed a nanoadjuvant for immune therapy using iron tungsten oxide (FeWOx)-based nanosheets with surface PEGylation (FeWOx-PEG). This FeWOx-PEG nanoadjuvant serves as a chemodynamic reagent via the Fenton reaction and acts as a photosensitizer for photodynamic and photothermal therapy under near-infrared II laser irradiation; however, it could also be used to augment tumor-infiltrating T-cells and provoke a systemic antitumor immune response by combining the immunogenic cell death triggered by ROS and photothermal therapy with the immune checkpoint blockade. This research demonstrates that application of the FeWOx-PEG nanoadjuvant under the guidance of magnetic resonance/computed tomography/photoacoustic imaging can eliminate the primary tumor and suppress the growth of distant tumors.


Subject(s)
B7-H1 Antigen , Immunogenic Cell Death , Cell Line, Tumor , Humans , Immunotherapy , Phototherapy , Photothermal Therapy
5.
ACS Nano ; 14(10): 12652-12667, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32986406

ABSTRACT

Organic-inorganic hybrid materials have drawn increasing attention as photothermal agents in tumor therapy due to the advantages of green synthesis, high loading efficiency of hydrophobic drugs, facile incorporation of theranostic iron, and excellent photothermal efficiency without inert components or additives. Herein, we proposed a strategy for biomimetic engineering-mediated enhancement of photothermal performance in the tumor microenvironment (TME). This strategy is based on the specific characteristics of organic-inorganic hybrid materials and endows these materials with homologous targeting ability and photothermal stability in the TME. The hybrid materials perform the functions of cancer cells to target homolytic tumors (acting as "artificial nanotargeted cells (ANTC)"). Inspired by the pH-dependent disassembly behaviors of tannic acid (TA) and ferric ion (FeIII) and subsequent attenuation of photothermal performance, cancer cell membranes were self-deposited onto the surfaces of protoporphyrin-encapsulated TA and FeIII nanoparticles to achieve ANTC with TME-stable photothermal performance and tumor-specific phototherapy. The resulting ANTC can be used as contrast agents for concurrent photoacoustic imaging, magnetic resonance imaging, and photothermal imaging to guide the treatment. Importantly, the high loading efficiency of protoporphyrin enables the initiation of photodynamic therapy to enhance photothermal therapeutic efficiency, providing antitumor function with minimal side effects.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Animals , Cell Line, Tumor , Ferric Compounds , Mice , Mice, Inbred BALB C , Multimodal Imaging , Phototherapy , Theranostic Nanomedicine
6.
Int J Nanomedicine ; 12: 911-923, 2017.
Article in English | MEDLINE | ID: mdl-28184161

ABSTRACT

The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1'-dioctadecyl-3,3,3',3' -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors.


Subject(s)
Fluorocarbons/chemistry , Folic Acid/chemistry , Molecular Imaging/methods , Nanostructures/chemistry , Ovarian Neoplasms/diagnostic imaging , Ultrasonics , Animals , Contrast Media/administration & dosage , Female , Hyperthermia, Induced , Mice , Mice, Inbred BALB C , Mice, Nude , Microbubbles , Ovarian Neoplasms/pathology , Phase Transition , Sonication , Volatilization , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL