Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Seizure ; 101: 103-108, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35944422

ABSTRACT

OBJECTIVE: To investigate whether the dynamic functional connectivity (dFC) of striatal-cortical circuits changes in juvenile myoclonic epilepsy (JME). METHODS: The resting-state EEG-fMRI and the sliding-window approach were adopted to explore the dynamic striatal-cortical circuitry in thirty JME patients compared with 30 well-matched health controls (HCs). Six pairs of striatal seeds were selected as regions of interests. The correlation analysis was performed to reveal the relationship between the altered dFC variability and clinical variables in JME group. RESULTS: JME patients exhibited increased dFC variability mainly involved in fronto-striatal and striatal-thalamic networks; decreased dFC variability between striatum subdivisions and default mode network (DMN) regions compared with HCs (p<0.05, GRF corrected). In addition, the hypervariability between left ventral-rostral putamen and left medial superior frontal gyrus was positively (r= 0.493, p=0.008) correlated with the mean frequency score of myoclonic seizures in JME group. CONCLUSION: JME presented altered dFC variability in striatal-cortical circuits. The pattern of altered circuits showed increased variability in fronto-striatal and striatal-thalamic networks and decreased variability in striatal-DMN. These results provide novel information about the dynamic neural striatal-cortical circuitry of JME.


Subject(s)
Myoclonic Epilepsy, Juvenile , Brain , Gray Matter , Humans , Magnetic Resonance Imaging/methods , Myoclonic Epilepsy, Juvenile/diagnostic imaging , Seizures , Thalamus/diagnostic imaging
2.
Brain Cogn ; 151: 105748, 2021 07.
Article in English | MEDLINE | ID: mdl-33971496

ABSTRACT

In patients with Alzheimer's Disease (AD), the hippocampal network has been extensively investigated in previous studies; however, little is known about the morphological network associated with the hippocampus in the AD patients. A total of 68 patients with AD and another 68 gender and age matched healthy subjects were studied. Individual-level morphological hippocampal networks were constructed based on volume and texture features extracted from MRI to study the connections between bilateral hippocampus and 11 other subcortical gray matter structures. The relationship between morphological connections and Mini-Mental State Examination (MMSE) scores was also studied. Connections between bilateral hippocampus and bilateral thalamus, bilateral putamen were significant differences between the AD patients and controls (p < 0.05). There were significantly different in bilateral hippocampal connectivity, and for the left hippocampus, the connection to the right caudate were found to be statistically significant. The morphological connections between left hippocampus and bilateral thalamus (left: R = 0.371, p < 0.001; right: R = 0.411, p < 0.001), bilateral putamen (left: R = 0.383, p < 0.001; right: R = 0.348, p < 0.001), right hippocampus and bilateral thalamus (left: R = 0.370, p < 0.001; right: R = 0.387, p < 0.001), left putamen (R = 0.377, p < 0.001) were significantly positively correlated with the MMSE scores. Similar patterns were observed for left and right hippocampal connectivity and the connections highly associated with MMSE scores were also within the abnormal connections in AD patients.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Brain , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Thalamus/diagnostic imaging
3.
Hum Brain Mapp ; 41(14): 3855-3866, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32592228

ABSTRACT

This study explored the topological characteristics of brain white matter structural networks in patients with Paroxysmal Kinesigenic Dyskinesia (PKD), and the potential influence of the brain network stability gene PRRT2 on the structural connectome in PKD. Thirty-five PKD patients with PRRT2 mutations (PKD-M), 43 PKD patients without PRRT2 mutations (PKD-N), and 40 demographically-matched healthy control (HC) subjects underwent diffusion tensor imaging. Graph theory and network-based statistic (NBS) approaches were performed; the topological properties of the white matter structural connectome were compared across the groups, and their relationships with the clinical variables were assessed. Both disease groups PKD-M and PKD-N showed lower local efficiency (implying decreased segregation ability) compared to the HC group; PKD-M had longer characteristic path length and lower global efficiency (implying decreased integration ability) compared to PKD-N and HC, independently of the potential effects of medication. Both PKD-M and PKD-N had decreased nodal characteristics in the left thalamus and left inferior frontal gyrus, the alterations being more pronounced in PKD-M patients, who also showed abnormalities in the left fusiform and bilateral middle temporal gyrus. In the connectivity characteristics assessed by NBS, the alterations were more pronounced in the PKD-M group versus HC than in PKD-N versus HC. As well as the white matter alterations in the basal ganglia-thalamo-cortical circuit related to PKD with or without PRRT2 mutations, findings in the PKD-M group of weaker small-worldness and more pronounced regional disturbance show the adverse effects of PRRT2 gene mutations on brain structural connectome.


Subject(s)
Diffusion Tensor Imaging , Dystonia/pathology , Membrane Proteins/genetics , Nerve Net/pathology , Nerve Tissue Proteins/genetics , Prefrontal Cortex/pathology , Thalamus/pathology , Adolescent , Adult , Child , Dystonia/diagnostic imaging , Female , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Thalamus/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL