Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Dairy Sci ; 105(3): 2301-2314, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34955263

ABSTRACT

The objective of this experiment was to evaluate the effects of supplementing a rumen-protected source of Met, N-acetyl-l-methionine (NALM), on lactational performance and nitrogen metabolism in early- to mid-lactation dairy cows. Sixty multiparous Holstein dairy cows in early lactation (27 ± 4.3 d in milk, SD) were assigned to 4 treatments in a randomized complete block design. Cows were blocked by actual milk yield. Treatments were as follows: (1) no NALM (control); (2) 15 g/d of NALM (NALM15); (3) 30 g/d of NALM (NALM30); and (4) 45 g/d of NALM (NALM45). Diets were formulated using a Cornell Net Carbohydrate and Protein System (CNCPS) v.6.5 model software to meet or exceed nutritional requirements of lactating dairy cows producing 42 kg/d of milk and to undersupply metabolizable Met (control) or supply incremental amounts of NALM. The digestible Met (dMet) supply for control, NALM15, NALM30, and NALM45 were 54.7, 59.8, 64.7, and 72.2 g/d, respectively. The supply of dMet was 88, 94, 104, and 115% of dMet requirement for control, NALM15, NALM30, and NALM45, respectively. Milk yield data were collected, dry matter intake (DMI) was measured daily, and milk samples were collected twice per week for 22 wk. Blood, ruminal fluid, urine, and fecal samples were collected during the covariate period and during wk 4, 8, and 16. Data were analyzed using the GLIMMIX procedure of SAS (SAS Institute) using covariates in the model for all variables except body weight. Linear, quadratic, and cubic contrasts were also tested. Treatments did not affect DMI, milk yield, and milk component concentration and yield; however, feed efficiency expressed as milk yield per DMI and 3.5% fat-corrected milk per DMI were quadratically affected, with greater response observed for NALM15 and NALM30 compared with control. Acetate proportion linearly increased, whereas propionate proportion linearly decreased with NALM supplementation. Blood urea nitrogen linearly decreased with NALM supplementation. Total plasma essential AA concentrations were quadratically affected, as greater values were observed for control and NALM45 than other treatments. Plasma Met concentration was quadratically affected as lower levels were observed with NALM15, whereas Met concentrations increased with NALM45 compared with control. Nitrogen utilization efficiency and apparent total-tract nutrient digestibility were not affected by treatment. Supplementation of NALM at 15 or 30 g/head per day resulted in the greatest improvements in feed efficiency without affecting N metabolism of early- to mid-lactation dairy cows.


Subject(s)
Lactation , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Supplements , Female , Lactation/physiology , Methionine , Milk/metabolism , Rumen/metabolism
2.
J Dairy Sci ; 103(8): 7068-7080, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32505403

ABSTRACT

Undesirable interactions between trace mineral elements and ruminal contents may occur during digestion when mineral salts are supplemented. Antimicrobial effects of copper sulfate (CuSO4) may affect ruminal digestibility of nutrients when fed as a source of copper (Cu), while sodium selenite (Na2SeO3) may be reduced in the rumen to less available forms of selenium (Se). Our objective was to evaluate if protection of CuSO4 and Na2SeO3 by lipid-microencapsulation would induce changes on ruminal microbial fermentation. We used 8 fermentors in a dual-flow continuous-culture system in a 4 × 4 duplicated Latin square with a 2 × 2 factorial arrangement of treatments. Factors were CuSO4 protection (unprotected and protected by lipid-microencapsulation) and Na2SeO3 protection (unprotected and protected by lipid-microencapsulation). Treatments consisted of supplementation with 15 mg/kg of Cu and 0.3 mg/kg of Se from either unprotected or protected (lipid-microencapsulated) sources, as follows: (1) Control (unprotected CuSO4 + unprotected Na2SeO3); (2) Cu-P (protected CuSO4 + unprotected Na2SeO3); (3) Se-P (unprotected CuSO4 + protected Na2SeO3); (4) (Cu+Se)-P (protected CuSO4 + protected Na2SeO3). All diets had the same nutrient composition and fermentors were fed 106 g of dry matter/d. Each experimental period was 10 d (7 d of adaptation and 3 d for sample collections). Daily pooled samples of effluents were analyzed for pH, NH3-N, nutrient digestibility, and flows (g/d) of total N, NH3-N, nonammonia N (NAN), bacterial N, dietary N, and bacterial efficiency. Kinetics of volatile fatty acids was analyzed in samples collected daily at 0, 1, 2, 4, 6, and 8 h after feeding. Main effects of Cu protection, Se protection, and their interaction were tested for all response variables. Kinetics data were analyzed as repeated measures. Protection of Cu decreased acetate molar proportion, increased butyrate proportion, and tended to decrease acetate:propionate ratio in samples of kinetics, but did not modify nutrient digestibility. Protection of Se tended to decrease NH3-N concentration, NH3-N flow, and CP digestibility; and to increase flows of nonammonia N and dietary N. Our results indicate that protection of CuSO4 may increase butyrate concentration at expenses of acetate, while protection of Na2SeO3 tended to reduce ruminal degradation of N. Further research is needed to determine the effects of lipid-microencapsulation on intestinal absorption, tissue distribution of Cu and Se, and animal performance.


Subject(s)
Bacteria/drug effects , Cattle/physiology , Copper Sulfate/administration & dosage , Dietary Supplements/analysis , Fatty Acids, Volatile/metabolism , Sodium Selenite/administration & dosage , Animal Feed/analysis , Animals , Bacteria/metabolism , Bioreactors/veterinary , Cattle/microbiology , Culture Techniques/veterinary , Diet/veterinary , Digestion , Drug Compounding/veterinary , Female , Fermentation/drug effects , Lipids/chemistry , Nutrients/metabolism , Rumen/metabolism , Rumen/microbiology , Trace Elements/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL