ABSTRACT
Food safety crises involving persistent organic pollutants [POPs, e.g. dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides] lead to systematic slaughter of livestock to prevent their entry into the food chain. Therefore, there is a need to develop strategies to depurate livestock moderately contaminated with POPs in order to reduce such economic and social damages. This study aimed to test a POPs depuration strategy based on undernutrition (37% of energy requirements) combined with mineral oil (10% in total dry matter intake) in nine non-lactating ewes contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and PCBs 126 and 153. In order to better understand the underlying mechanisms of the depuration process, POPs kinetics and body lipids dynamics were followed concomitantly over 57-day of depuration in POPs storage (adipose tissue, AT), central distribution (blood) and excretion (faeces) compartments. Faecal POPs concentrations in underfed and mineral oil supplemented ewes increased by 2.0 to 2.6-fold, but not proportionally to lipids concentration which increased by 6-fold, compared to the control ewes. Nonetheless, after 57 days of depuration in undernutrition and mineral oil supplementation, AT POPs concentrations were 1.5 to 1.6-fold higher while serum concentrations remained unchanged compared to the control ewes. This was concomitant with a decrease by 2.7-fold of the AT estimated lipids weight along the depuration period. This reduction of the volume of the storage compartment combined with the increase of POPs faecal excretion in underfed and mineral oil supplemented ewes led to a reduction by 1.5-fold of the PCB 126 AT burden, while no changes were observed for TCDD and PCB 153 burdens (vs. no change for PCB 126 and increases for TCDD and PCB 153 AT burdens in control ewes). The original approach of this study combining the fine description at once of POPs kinetic and of body lipids dynamic improved our understanding of POPs fate in the ruminant.
Subject(s)
Adipose Tissue/metabolism , Dietary Fats, Unsaturated/administration & dosage , Dioxins/metabolism , Feces/chemistry , Malnutrition/pathology , Polychlorinated Biphenyls/metabolism , Adipose Tissue/chemistry , Animals , Body Burden , Body Weight , Dioxins/analysis , Dioxins/blood , Environmental Pollutants/analysis , Environmental Pollutants/blood , Environmental Pollutants/metabolism , Kinetics , Lipids/blood , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/blood , SheepABSTRACT
Food safety crises involving persistent organic pollutants (POPs) lead to systematic slaughter of livestock to prevent contaminants from entering the food chain. Therefore, there is a need to develop strategies to depurate livestock moderately contaminated with POPs to reduce economic and social damage. This study aimed to test undernutrition (37% of energy requirements) combined with mineral oil (10% in total dry matter intake) in nine non-lactating ewes contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) 126 and 153 as a strategy to enhance the depuration of POPs through faecal excretion. To better understand the underlying mechanisms of the depuration process, lipophilic POPs and lipid fluxes were co-monitored in various body and excretion compartments. Body compartments (adipose tissues, muscle, liver and blood) and the total empty body were analyzed for lipids and POPs concentrations and burdens at slaughter, as well as excretion compartments (faeces and wool) collected during the depuration period. Decreases in empty body total and lipid weights were 6-fold higher in underfed and supplemented ewes compared to control ewes. In addition, over the depuration period undernutrition and supplementation treatment increased faecal TCDD, PCBs 126 and 153 excretions by 1.4- to 2.1-fold but tended to decrease wool PCB 153 excretion by 1.4-fold. This induced 2- to 3-fold higher decreases in the empty body POPs burdens for underfed and supplemented ewes. Nonetheless, when expressed relative to the calculated initial empty body burdens, burdens at slaughter decreased only slightly from 97%, 103% and 98% for control ewes to 92%, 97% and 94% for underfed and supplemented ones, for TCDD, PCBs 126 and 153, respectively. Fine descriptions at once of POPs kinetic (companion paper 1) and mass balance (companion paper 2), and of body lipid dynamics were very useful in improving our understanding of the fate of POPs in the ruminants.