Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Bot ; 108(6): 1016-1028, 2021 06.
Article in English | MEDLINE | ID: mdl-34114219

ABSTRACT

PREMISE: Pollinator foraging behavior can influence pollen dispersal and gene flow. In many plant species a pollinator trips a flower by applying pressure to release its sexual organs. We propose that differences in tripping rate among grooming pollinators could generate distinct pollen deposition curves, the pattern of pollen deposition over successive flowers visited. This study compares the pollen deposition curves of two grooming pollinators, a social bumble bee and a solitary leafcutting bee, with distinct tripping rates on Medicago sativa flowers. We predict a steeper deposition curve for pollen moved by leafcutting bees, the pollinator with the higher tripping rate. METHODS: Medicago sativa plants carrying a gene (GUS) whose product is easily detected by staining, were used as pollen donors. After visiting the GUS plants, a bee was released on a linear array of conventional M. sativa plants. The number of GUS pollen grains deposited over successive flowers visited or over cumulative distances was examined. Distinct mixed effect Poisson regression models, illustrating different rates of decay in pollen deposition, were fitted to the pollen data for each bee species. RESULTS: Pollen decay was steeper for leafcutting bees relative to bumble bees for both models of flowers visited and cumulative distance, as predicted by their higher tripping rate. CONCLUSIONS: This is the first report of a difference in pollen deposition curves between two bee species, both grooming pollinators. Such differences could lead to distinct impacts of bee species on gene flow, genetic differentiation, introgression, and ultimately speciation.


Subject(s)
Gene Flow , Pollination , Animals , Bees/genetics , Flowers , Medicago sativa/genetics , Pollen/genetics
2.
Theor Appl Genet ; 128(9): 1865-79, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26105686

ABSTRACT

A simple Weibull distribution based empirical model that predicts pollen-parent fecundity distributions based on polycross size alone has been developed in outbred forage legume species for incorporation into quantitative genetic theory. Random mating or panmixis is a fundamental assumption in quantitative genetic theory. Random mating is sometimes thought to occur in actual fact, although a large body of empirical work shows that this is often not the case in nature. Models have been developed to explain many non-random mating phenomena. This paper measured pollen-parent fecundity distributions among outbred perennial forage legume species [autotetraploid alfalfa (Medicago sativa L.), autohexaploid kura clover (Trifolium ambiguum M. Bieb.), and diploid red clover (Trifolium pratense L.)] in ten polycrosses ranging in size (N) from 9 to 94 pollinated with bee pollinators [Bumble Bees (Bombus impatiens Cr.) and leafcutter bees (Megachile rotundata F.)]. A Weibull distribution best fit the observed pollen-parent fecundity distributions. After standardizing data among the 10 polycrosses, a single Weibull distribution-based model was obtained with an R (2) of 0.978. The model is able to predict pollen-parent fecundity distributions based on polycross size alone. The model predicts that the effective polycross size will be approximately 9 % smaller than under random mating (i.e., N e/N ~ 0.91). The model is simple and can easily be incorporated into other models or simulations requiring a pollen-parent fecundity distribution. Further work is needed to determine how widely applicable the model is.


Subject(s)
Crosses, Genetic , Fertility/genetics , Medicago sativa/genetics , Pollen/genetics , Trifolium/genetics , Animals , Bees , DNA, Plant/genetics , Models, Biological , Plant Breeding , Pollination , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL