Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473970

ABSTRACT

Chamaecyparis obtusa (Siebold & Zucc.) Endl., which belongs to the Cupressaceae family, occurs naturally in North America and Asia, especially in Korea, Taiwan and Japan, where it is an evergreen, coniferous, sacred, ethnic tree. It has many useful varieties that are widespread throughout the world and grown for decorative purposes. It is most commonly used as an ornamental plant in homes, gardens or parks. It is also widely used in many areas of the economy; for example, its wood is used in architecture as well as furniture production. In addition, oil extracted from Chamaecyparis obtusa is increasingly used in cosmetology for skin care. Due to its wide economic demand, mainly in Japan, it represents the largest area of plantation forest. Despite this, it is on the red list of endangered species. Its use in ethnopharmacology has led to more and more research in recent years in an attempt to elucidate the potential mechanisms of its various biological activities, such as antimicrobial, antioxidant, anticancer, antidiabetic, antiasthmatic, anti-inflammatory, antiallergic, analgesic and central nervous system effects. It has also been shown that Chamaecyparis obtusa can be used as an insect repellent and an ingredient in plant disease treatment. This thesis provides a comprehensive review of the biological studies to date, looking at different areas of the economic fields of potential use of Chamaecyparis obtusa.


Subject(s)
Chamaecyparis , Chamaecyparis/physiology , Trees/physiology , Japan , Anti-Inflammatory Agents , Asia
2.
Cells ; 11(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-36291112

ABSTRACT

Plectranthus ornatus Codd, the genus Plectranthus of the Lamiaceae family, has been used as traditional medicine in Africa, India and Australia. Pharmacological studies show the use of this plant to treat digestive problems. In turn, leaves were used for their antibiotic properties in some regions of Brazil to treat skin infections. The present study examines the anti-inflammatory, antioxidant and cytotoxic effects of the halimane and labdane diterpenes (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and 1α,6ß-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and the forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from P. ornatus on lung (A549) and leukemia (CCRF-CEM) cancer cell lines, and on normal human retinal pigment epithelial (ARPE-19) cell line in vitro. Additionally, molecular docking and computational approaches were used. ADMET properties were analysed through SwissADME and proTox-II-Prediction. The results indicate that all tested compounds significantly reduced the viability of the cancer cells and demonstrated no cytotoxic effects against the non-neoplastic cell line. The apoptosis indicators showed increased ROS levels for both the tested A549 and CCRF-CEM cancer cell lines after treatment. Furthermore, computational studies found HAL to exhibit moderate antioxidant activity. In addition, selected compounds changed mitochondrial membrane potential (MMP), and increased DNA damage and mitochondrial copy number for the CCRF-CEM cancer cell line; they also demonstrated anti-inflammatory effects on the ARPE-19 normal cell line upon lipopolysaccharide (LPS) treatment, which was associated with the modulation of IL-6, IL-8, TNF-α and GM-CSF genes expression. Docking studies gave indication about the lowest binding energy for 1,6-di-O-acetylforskolin docked into IL-6, TNF-α and GM-CSF, and 1,6-di-O-acetyl-9-deoxyforskolin docked into IL-8. The ADMET studies showed drug-likeness properties for the studied compounds. Thus, halimane and labdane diterpenes isolated from P. ornatus appear to offer biological potential; however, further research is necessary to understand their interactions and beneficial properties.


Subject(s)
Diterpenes , Plectranthus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Colforsin , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Lipopolysaccharides/metabolism , Molecular Docking Simulation , Plectranthus/chemistry , Plectranthus/metabolism , Protoporphyrinogen Oxidase/metabolism , Reactive Oxygen Species/metabolism , Retinal Pigments/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Front Pharmacol ; 13: 1006832, 2022.
Article in English | MEDLINE | ID: mdl-36313298

ABSTRACT

Glioblastoma (GB) is the most malignant and frequent primary tumor of the central nervous system. The lack of diagnostic tools and the poor prognosis associated with this tumor type leads to restricted and limited options of treatment, namely surgical resection and radio-chemotherapy. However, despite these treatments, in almost all cases, patients experience relapse, leading to survival rates shorter than 5 years (∼15-18 months after diagnosis). Novel therapeutic approaches are urgently required (either by discovering new medicines or by repurposing drugs) to surpass the limitations of conventional treatments and improve patients' survival rate and quality of life. In the present work, we investigated the antitumor potential of parvifloron D (ParvD), a drug lead of natural origin, in a GB cell line panel. This natural drug lead induced G2/M cell cycle arrest and apoptosis via activation of the intrinsic mitochondria-dependent pathway. Moreover, the necessary doses of ParvD to induce pronounced inhibitory effects were substantially lower than that of temozolomide (TMZ, first-line treatment) required to promote comparable effects. Therefore, ParvD may have the potential to overcome the resistance related to TMZ and contribute to the pursuit of hopeful treatments based on ParvD as a drug lead for future chemotherapeutics.

4.
Molecules ; 27(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744938

ABSTRACT

Glioblastoma (GB) is the most malignant form of primary astrocytoma, accounting for more than 60% of all brain tumors in adults. Nowadays, due to the development of multidrug resistance causing relapses to the current treatments and the development of severe side effects resulting in reduced survival rates, new therapeutic approaches are needed. The genus Plectranthus belongs to the Lamiaceae family and is known to be rich in abietane-type diterpenes, which possess antitumor activity. Specifically, P. hadiensis (Forssk.) Schweinf. ex Sprenger has been documented for the use against brain tumors. Therefore, the aim of this work was to perform the bioguided isolation of compounds from the acetonic extract of P. hadiensis stems and to investigate the in vitro antiglioblastoma activity of the extract and its isolated constituents. After extraction, six fractions were obtained from the acetonic extract of P. hadiensis stems. In a preliminary biological screening, the fractions V and III showed the highest antioxidant and antimicrobial activities. None of the fractions were toxic in the Artemia salina assay. We obtained different abietane-type diterpenes such as 7α-acetoxy-6ß-hydroxyroyleanone (Roy) and 6ß,7ß-dihydroxyroyleanone (DiRoy), which was also in agreement with the HPLC-DAD profile of the extract. Furthermore, the antiproliferative activity was assessed in a glioma tumor cell line panel by the Alamar blue assay. After 48 h treatment, Roy exerted strong antiproliferative/cytotoxic effects against tumor cells with low IC50 values among the different cell lines. Finally, we synthesized a new fluorescence derivative in this study to evaluate the biodistribution of Roy. The uptake of BODIPY-7α-acetoxy-6ß-hydroxyroyleanone by GB cells was associated with increased intracellular fluorescence, supporting the antiproliferative effects of Roy. In conclusion, Roy is a promising natural compound that may serve as a lead compound for further derivatization to develop future therapeutic strategies against GB.


Subject(s)
Brain Neoplasms , Plectranthus , Abietanes/chemistry , Brain Neoplasms/drug therapy , Humans , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plectranthus/chemistry , Tissue Distribution
5.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35631361

ABSTRACT

Hymenocardia acida (H. acida) is an African well-known shrub recognized for numerous medicinal properties, including its cancer management potential. The advent of nanotechnology in delivering bioactive medicinal plant extract with poor solubility has improved the drug delivery system, for a better therapeutic value of several drugs from natural origins. This study aimed to evaluate the anticancer properties of H. acida using human lung (H460), breast (MCF-7), and colon (HCT 116) cancer cell lines as well as the production, characterization, and cytotoxicity study of H. acida loaded into PLGA nanoparticles. Benchtop models of Saccharomyces cerevisiae and Raniceps ranninus were used for preliminary toxicity evaluation. Notable cytotoxic activity in benchtop models and human cancer cell lines was observed for H. acida crude extract. The PLGA nanoparticles loading H. acida had a size of about 200 nm and an association efficiency of above 60%, making them suitable to be delivered by different routes. The outcomes from this research showed that H. acida has anticancer activity as claimed from an ethnomedical point of view; however, a loss in activity was noted upon encapsulation, due to the sustained release of the drug.

6.
Cancers (Basel) ; 14(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35326606

ABSTRACT

Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.

7.
Front Pharmacol ; 12: 768268, 2021.
Article in English | MEDLINE | ID: mdl-34916943

ABSTRACT

Ethnopharmacological Relevance: Plectranthus genus (Lamiaceae family) contain several species with acknowledged ethnopharmacological uses, such as, for gastrointestinal and respiratory-related problems, due to their anti-inflammatory, antibacterial and antifungal properties. The bioactivity of isolated medicinal compounds from this genus justifies the increased interest in recent times for species of Plectranthus, placing them in the spotlight for natural product drug development. Aim of the study: To the best of our knowledge, this is the first review on the biological activities of Plectranthus ecklonii Benth. As such, the aim of this review was three-fold: 1) to summarize the chemical compounds isolated from P. ecklonii; 2) to collate the biological activities and mechanisms of action of these compounds from in vitro studies; and 3) to evaluate the documented uses and potential applications of this species, in order to postulate on the direction of pharmaceutical uses of this species. Materials and methods: An extensive database retrieval was performed using the electronic databases Web of Science, PubMed, Google Scholar and ScienceDirect. The search criteria consisted of the keywords "Plectranthus ecklonii", "Plectranthus ecklonii + review", "Plectranthus ecklonii + diterpenes" or "Plectranthus ecklonii + abietanes", "ecklonii + parviflorone D", searched individually and as combinations. Eligibility criteria were set out and titles in English, Portuguese and Spanish were reviewed, with all references included dating from 1970 to 2021. A total of 169 papers were selected and included. Chemical structures were drawn using ChemDraw 20.0, CID numbers were searched in PubChem and the PRISMA diagram was created using PowerPoint 2012. Results: To date, a total of 28 compounds have been isolated from P. ecklonii, including diterpenes, triterpenes, flavonoids, and hydroxycinnamic acids. Most focused on the antimicrobial action of its constituents, although compounds have demonstrated other bioactivities, namely antioxidant, anti-inflammatory and antitumor. The most recent studies emphasize the diterpenoids, particularly parviflorone D, with the help of nanotechnology. Conclusions: The widespread ethnobotanical and traditional uses of P. ecklonii can be scientifically justified by a range of biological activities, demonstrated by isolated secondary metabolites. These bioactivities showcase the potential of this species in the development of economically important active pharmaceutical ingredients, particularly in anticancer therapy.

8.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34638551

ABSTRACT

Different approaches have been reported to enhance penetration of small drugs through physiological barriers; among them is the self-assembly drug conjugates preparation that shows to be a promising approach to improve activity and penetration, as well as to reduce side effects. In recent years, the use of drug-conjugates, usually obtained by covalent coupling of a drug with biocompatible lipid moieties to form nanoparticles, has gained considerable attention. Natural products isolated from plants have been a successful source of potential drug leads with unique structural diversity. In the present work three molecules derived from natural products were employed as lead molecules for the synthesis of self-assembled nanoparticles. The first molecule is the cytotoxic royleanone 7α-acetoxy-6ß-hydroxyroyleanone (Roy, 1) that has been isolated from hairy coleus (Plectranthus hadiensis (Forssk.) Schweinf). ex Sprenger leaves in a large amount. This royleanone, its hemisynthetic derivative 7α-acetoxy-6ß-hydroxy-12-benzoyloxyroyleanone (12BzRoy, 2) and 6,7-dehydroroyleanone (DHR, 3), isolated from the essential oil of thicket coleus (P. madagascariensis (Pers.) Benth.) were employed in this study. The royleanones were conjugated with squalene (sq), oleic acid (OA), and/or 1-bromododecane (BD) self-assembly inducers. Roy-OA, DHR-sq, and 12BzRoy-sq conjugates were successfully synthesized and characterized. The cytotoxic effect of DHR-sq was previously assessed on three human cell lines: NCI-H460 (IC50 74.0 ± 2.2 µM), NCI-H460/R (IC50 147.3 ± 3.7 µM), and MRC-5 (IC50 127.3 ± 7.3 µM), and in this work Roy-OA NPs was assayed against Vero-E6 cells at different concentrations (0.05, 0.1, and 0.2 mg/mL). The cytotoxicity of DHR-sq NPs was lower when compared with DHR alone in these cell lines: NCI-H460 (IC50 10.3 ± 0.5 µM), NCI-H460/R (IC50 10.6 ± 0.4 µM), and MRC-5 (IC5016.9 ± 0.5 µM). The same results were observed with Roy-OA NPs against Vero-E6 cells as was found to be less cytotoxic than Roy alone in all the concentrations tested. From the obtained DLS results, 12BzRoy-sq assemblies were not in the nano range, although Roy-OA NP assemblies show a promising size (509.33 nm), Pdl (0.249), zeta potential (-46.2 mV), and spherical morphology from SEM. In addition, these NPs had a low release of Roy at physiological pH 7.4 after 24 h. These results suggest the nano assemblies can act as prodrugs for the release of cytotoxic lead molecules.


Subject(s)
Abietanes/chemistry , Abietanes/pharmacology , Drug Delivery Systems/methods , Nanoparticles/chemistry , Animals , Cell Line , Chlorocebus aethiops , Humans , Hydrocarbons, Brominated/chemistry , Oleic Acid/chemistry , Plant Extracts/chemistry , Plectranthus/chemistry , Prodrugs/adverse effects , Prodrugs/pharmacology , Squalene/chemistry , Toxicity Tests, Acute/methods , Vero Cells
9.
Chem Biodivers ; 18(8): e2100455, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34185351

ABSTRACT

Betulinic acid, which is found in transgenic roots of Senna obtusifolia (L.) H.S.Irwin & Barneby, is a pentacyclic triterpene with distinctive pharmacological activities. In this study, we report the differences in the content of betulinic acid and selected anthraquinones in transgenic S. obtusifolia hairy roots with overexpression of the PgSS1 gene (SOPSS2 line) and in transformed hairy roots without this genetic construct (SOA41 line). Both hairy root lines grew in 10 L sprinkle bioreactor. Additionally, the extracts obtained from this plant material were used for biological tests. Our results demonstrated that the SOPSS2 hairy root cultures from the bioreactor showed an increase in the content of betulinic acid (38.125 mg/g DW), compared to the SOA41 hairy root line (4.213 mg/g DW). Biological studies have shown a cytotoxic and antiproliferative effect on U-87MG glioblastoma cells, and altering the level of apoptotic proteins (Bax, p53, Puma and Noxa). Antimicrobial properties were demonstrated for both tested extracts, with a stronger effect of SOPSS2 extract. Moreover, both extracts showed moderate antiviral properties on norovirus surrogates.


Subject(s)
Models, Biological , Pentacyclic Triterpenes/metabolism , Plants, Genetically Modified/metabolism , Senna Plant/metabolism , Anthraquinones/chemistry , Anthraquinones/metabolism , Anthraquinones/pharmacology , Apoptosis/drug effects , Bioreactors , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Plant/drug effects , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Microbial Sensitivity Tests , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Plants, Genetically Modified/chemistry , Senna Plant/chemistry , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Betulinic Acid
10.
Pharmaceuticals (Basel) ; 14(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922685

ABSTRACT

Plectranthus species (Lamiaceae) have been employed in traditional medicine and this is now validated by the presence of bioactive abietane-type diterpenoids. Herein, sixteen Plectranthus acetonic extracts were prepared by ultrasound-assisted extraction and their biological activity was screened. The antimicrobial activity of each extract was screened against yeasts, and Gram-positive and Gram-negative bacteria. The P. hadiensis and P. mutabilis extracts possessed significant activity against Staphylococcus aureus and Candida albicans (microdilution method). Moreover, all extracts showed antioxidant activity using the DPPH method, with P. hadiensis and P. mutabilis extracts having the highest scavenging activities. Selected by the Artemia salina model, P. hadiensis and P.ciliatus possessed low micromolar anti-proliferative activities in human colon, breast, and lung cancer cell lines. Furthermore, the most bioactive extract of P. hadiensis leaves and the known abietane diterpene, 7α-acetoxy-6ß-hydroxyroyleanone isolated from this plant, were tested against the aggressive type triple negative breast cancer (MDA-MB-231S). P. hadiensis extract reduced the viability of MDA-MB-231S cancer cell line cells, showing an IC50 value of 25.6 µg/mL. The IC50 value of 7α-acetoxy-6ß-hydroxyroyleanone was 5.5 µM (2.15 µg/mL), suggesting that this lead molecule is a potential starting tool for the development of anti-cancer drugs.

11.
J Enzyme Inhib Med Chem ; 36(1): 257-269, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33322969

ABSTRACT

A series of Plectranthus spp. plant extracts (aqueous, acetonic, methanolic and ethyl acetic) obtained from eight different species, and previously isolated compounds (ranging from polyphenols, diterpenes and triterpenes), were assayed for in vitro inhibition of the skin-related enzymes tyrosinase, collagenase and elastase, and for studying their antioxidant properties. The ethyl acetic extracts of P. grandidentatus and P. ecklonii registered the highest antioxidant activity, whereas acetonic, methanolic and ethyl acetic extracts of P. ecklonii, P. grandidentatus, P. madagascariensis and P. saccatus concerning the enzymatic inhibition assays revealed high anti-tyrosinase and anti-collagenase activities. From the isolated compounds tested, abietane diterpenes and triterpenes were highly active against tyrosinase and elastase activity. Overall, the experimental results showed the powerful antioxidant and inhibitory action on skin-related enzymes tyrosinase, collagenase and elastase of Plectranthus spp. extracts and/or isolated compounds, supporting their further research as bioactive metabolites against skin sagging and hyperpigmentation in cosmetic and pharmaceutical formulations.


Subject(s)
Antioxidants/pharmacology , Collagenases/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Pancreatic Elastase/antagonists & inhibitors , Plant Extracts/pharmacology , Plectranthus/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Molecular Conformation , Monophenol Monooxygenase/metabolism , Pancreatic Elastase/metabolism , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Skin/drug effects , Skin/metabolism , Species Specificity , Structure-Activity Relationship
12.
Pharmaceutics ; 12(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291738

ABSTRACT

Sambucus nigra L. is widely used in traditional medicine with different applications. However, confirmative studies are strongly required. This study aimed to assess the biological activities of the S. nigra flower's extract encapsulated into two different types of nanoparticles for optimizing its properties and producing further evidence of its potential therapeutic uses. Different nanoparticles (poly(lactide-co-glycolide, PLGA) and poly-Ɛ-caprolactone (PCL), both with oleic acid, were prepared by emulsification/solvent diffusion and solvent-displacement methods, respectively. Oleic acid was used as a capping agent. After the nanoparticles' preparation, they were characterized and the biological activities were studied in terms of collagenase, in vitro and in vivo anti-inflammatory, and in vitro cell viability. Rutin and naringenin were found to be the major phenolic compounds in the studied extract. The encapsulation efficiency was higher than 76% and revealed to have an impact on the release of the extract, mainly for the PLGA. Moreover, biochemical and histopathological analyses confirmed that the extract-loaded PLGA-based nanoparticles displayed the highest anti-inflammatory activity. In addition to supporting the previously reported evidence of potential therapeutic uses of S. nigra, these results could draw the pharmaceutical industry's interest to the novelty of the nanoproducts.

13.
Pharmaceuticals (Basel) ; 13(6)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532114

ABSTRACT

Plectranthus ecklonii Benth. has widespread ethnobotanical use in African folk medicine for its medicinal properties in skin conditions. In this study, two different basic formulations containing P. ecklonii extracts were prepared, one in an organic solvent and the other using water. The aqueous extract only contained rosmarinic acid (RA) at 2.02 mM, and the organic extract contained RA and parvifloron D at 0.29 and 3.13 mM, respectively. RA in aqueous solution permeated skin; however, in P. ecklonii organic extract, this was not detected. Thus, P. ecklonii aqueous extract was further studied and combined with benzophenone-4, which elevated the sun protection factor (SPF) by 19.49%. No significant cytotoxic effects were observed from the aqueous extract. The Staphylococcus epidermidis strain was used to determine a minimum inhibitory concentration (MIC) value of 10 µg.mL-1. The aqueous extract inhibited the activity of acetylcholinesterase by 59.14 ± 4.97%, and the IC50 value was 12.9 µg.mL-1. The association of the P. ecklonii extract with a UV filter substantially elevated its SPF efficacy. Following the multiple bioactivities of the extract and its active substances, a finished product could be claimed as a multifunctional cosmeceutical with broad skin valuable effects, from UV protection to antiaging action.

14.
Curr Pharm Des ; 26(24): 2892-2908, 2020.
Article in English | MEDLINE | ID: mdl-32250221

ABSTRACT

Medicinal plants are a good source of novel therapeutic drugs, due to the phytochemicals present. Artemia, commonly known as brine shrimp, is a tiny halophilic invertebrate belonging to class Crustacean, which plays an important role in saline aquatic and marine eco-systems. Besides its usage in aquaculture, it is also highly valued for its application in toxicity detection and it is used in areas such as Ecology, Physiology, Ecotoxicology, Aquaculture and Genetics. Furthermore, Artemia based lethality assay (brine shrimp lethality assay, BSLA) is rapid, convenient and low cost. Presently, brine shrimp lethality assays are enormously employed in research and applied toxicology. It has been used in the study of natural products as a preliminary toxicity assay to screen a large number of extracts and compounds for drug discovery in medicinal plants. The aim of this review paper is to collect, organize, select and discuss the existing knowledge about the different uses of Artemia salina as a bench-top bioassay for the discovery and purification of bioactive natural products.


Subject(s)
Artemia , Plants, Medicinal , Animals , Biological Assay , Humans
15.
Biomolecules ; 10(2)2020 01 28.
Article in English | MEDLINE | ID: mdl-32012853

ABSTRACT

Natural compounds isolated from plants are excellent starting points in drug design and have been widely studied as anticancer agents; they hence find use in a considerable proportion of anticancer drugs. The genus Plectranthus (Lamiaceae) comprises a large and widespread group of species with various applications in traditional medicine. Therefore, the aim of the present study was to determine the effectiveness of treatment with four abietane diterpenoids isolated from P.madagascariensis and P.ecklonii, 6,7-dehydroroyleanone, 7ß,6ß-dihydroxyroyleanone, 7α-acetoxy-6ß-hydroxyroyleanone and parvifloron D, in initiating apoptosis in a glioma cell line. The pure compounds were found to exhibit anticancer effects in primary H7PX glioma cells line by inducing apoptosis G2/M cell cycle arrest and double-strand breaks, indicated by increased levels of phosphorylated H2A.X and decreasing mitochondrial membrane potential; they also influenced the expression of pro- and anti-apoptotic genes (Bax, Bcl-2, TP53, or Cas-3). Our findings indicate that these compounds may offer potential as beneficial antitumor drugs but further in vivo studies are needed.


Subject(s)
Abietanes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Plant Extracts/pharmacology , Plectranthus/chemistry , Apoptosis , Brain Neoplasms/drug therapy , Cell Cycle , Cell Line, Tumor , Cell Survival , DNA Breaks, Double-Stranded , Drug Design , Flow Cytometry , Glioma/drug therapy , Histones/chemistry , Humans , Membrane Potential, Mitochondrial/drug effects , Necrosis , Phosphorylation
16.
Biomolecules ; 10(1)2020 01 19.
Article in English | MEDLINE | ID: mdl-31963771

ABSTRACT

Medicinal plants are important sources of new bioactive compounds with potential anticancer activity. Parvifloron D (ParvD) is an abietane diterpenoid, isolated in high amounts from Plectranthus ecklonii Benth. Previous reports have suggested potential therapeutic properties for ParvD. ParvD has shown pro-apoptotic and cytotoxic effects in leukemia and melanoma cell lines. However, to the best of our knowledge, there are no studies in triple-negative breast cancer (TNBC) models. TNBC is a breast cancer subtype characterized by an aggressive behavior with poor clinical outcomes and weak overall therapeutic responses to the current treatment options. This work aimed at evaluating the anticancer effect of ParvD in MDA-MB-231 cells, a model of human TNBC. To obtain sufficient amounts of purified ParvD the efficiency of several extraction methods was compared. ParvD (0.1-10 µM) decreased cell viability in a concentration-dependent manner. Treatment with ParvD (5 µM) significantly increased the percentage of apoptotic nuclei and exposure to 3 µM ParvD increased the sub-G1 population. Since altered cell adherence, migration, and invasion are determinant processes for the formation of metastases, the effect of ParvD on these cellular processes was tested. Although treatment with ParvD (1 µM) had no effect on cell-substrate attachment, ParvD (1 µM) significantly reduced cell chemotaxis and invasion. This is the first report describing the proapoptotic effect of ParvD in TNBC cells. Moreover, for the first time we have shown that ParvD reduces cell motility, unraveling potential anti-metastatic properties.


Subject(s)
Abietanes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Movement/drug effects , Triple Negative Breast Neoplasms/drug therapy , Abietanes/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Plectranthus/chemistry , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
17.
Oxid Med Cell Longev ; 2019: 9165784, 2019.
Article in English | MEDLINE | ID: mdl-31737178

ABSTRACT

Menyanthes trifoliata L. is a valuable medical plant found in Europe, North America, and Asia, which grows on peat bogs and swamps. It has long been used in folk medicine as a remedy for various ailments. This is the first report to demonstrate the protective antioxidant and anti-inflammatory properties of aqueous methanolic extracts derived from the aerial parts (MtAPV) and roots (MtRV) of in vitro grown plants on human umbilical vein endothelial cells (HUVECs). It describes the influence of the tested extracts on the expression of antioxidant (HO-1, NQO1, NRF2, kEAP1, and GCLC) and inflammation-related genes (IL-1α, IL-1ß, IL-6, TNF-α, and IFN-γ) in cells stimulated with H2O2 or LPS, respectively. In addition, M. trifoliata extracts were found to moderately affect the growth of certain bacterial and fungal pathogens, with the strongest antibacterial effect found against Pseudomonas aeruginosa and Enterococcus faecalis. M. trifoliata extracts demonstrated protective effects against mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damage caused by ROS, decreasing the numbers of mtDNA lesions in the ND1 and ND2 genes and nDNA damage in the TP53 and HPRT1 genes and reducing cleavage in PARP1- and γ-H2A.X-positive cells. The root extract of in vitro M. trifoliata (MtRV) appears to have better anti-inflammatory, antioxidant, antimicrobial, and protective properties than the extract from the aerial part (MtAPV). These differences in biological properties may result from the higher content of selected phenolic compounds and betulinic acid in the MtRV than in the MtAPV extract.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , DNA, Mitochondrial/physiology , Endothelium, Vascular/drug effects , Enterococcus faecalis/physiology , Growth Inhibitors/pharmacology , Magnoliaceae/chemistry , Plant Extracts/pharmacology , Pseudomonas aeruginosa/physiology , Cytokines/metabolism , Endothelium, Vascular/pathology , Enterococcus faecalis/drug effects , Growth Inhibitors/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Oxidation-Reduction , Plant Extracts/chemistry , Plant Roots , Pseudomonas aeruginosa/drug effects , Tumor Suppressor Protein p53/genetics
18.
Biomolecules ; 9(10)2019 10 17.
Article in English | MEDLINE | ID: mdl-31627339

ABSTRACT

The Plectranthus genus is commonly used in traditional medicine due to its potential to treat several illnesses, including bacterial infections and cancer. As such, aiming to screen the antibacterial and cytotoxic activities of extracts, sixteen selected Plectranthus species with medicinal potential were studied. In total, 31 extracts obtained from 16 Plectranthus spp. were tested for their antibacterial and anticancer properties. Well diffusion method was used for preliminary antibacterial screening. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the five most active acetonic extracts (P. aliciae, P. japonicus, P. madagascariensis var. "Lynne", P. stylesii, and P. strigosus) were determined. After preliminary toxicity evaluation on Artemia salina L., their cytotoxic properties were assessed on three human cancer cell lines (HCT116, MCF-7, and H460). These were also selected for mechanism of resistance studies (on NCI-H460/R and DLD1-TxR cells). An identified compound-parvifloron D-was tested in a pair of sensitive and MDR-Multidrug resistance cancer cells (NCI-H460 and NCI-H460/R) and in normal bronchial fibroblasts MRC-5. The chemical composition of the most active extract was studied through high performance liquid chromatography with a diode array detector (HPLC-DAD/UV) and liquid chromatography-mass spectrometry (LC-MS). Overall, P. strigosus acetonic extract showed the strongest antimicrobial and cytotoxic potential that could be explained by the presence of parvifloron D, a highly cytotoxic diterpene. This study provides valuable information on the use of the Plectranthus genus as a source of bioactive compounds, namely P. strigosus with the potential active ingredient the parvifloron D.


Subject(s)
Abietanes/pharmacology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antinematodal Agents/pharmacology , Plant Extracts/pharmacology , Plectranthus/chemistry , Abietanes/chemistry , Abietanes/isolation & purification , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antinematodal Agents/chemistry , Antinematodal Agents/isolation & purification , Artemia/drug effects , Candida albicans/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , HCT116 Cells , Humans , MCF-7 Cells , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Pseudomonas aeruginosa/drug effects , Saccharomyces cerevisiae/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Tumor Cells, Cultured
19.
Biomolecules ; 9(5)2019 05 08.
Article in English | MEDLINE | ID: mdl-31072074

ABSTRACT

Medicinal plants of the Plectranthus genus (Lamiaceae) are known for their ethnopharmacological relevance, mainly against infectious, dermatologic and gastrointestinal pathologies. Three Plectranthus species originated from South Africa, namely P. madagascariensis, P. neochilus and the rare P. porcatus were hereby screened for their antimicrobial and cytotoxic activities related with their known and/or potential ethnomedicinal uses. Twenty-six extracts were prepared by the combination of extraction methods (infusion, decoction, microwave-assisted, ultrasound-assisted, maceration and supercritical fluid extraction) with different polarity solvents (water, methanol, acetone and supercritical CO2). The comparison study of these extracts was elucidated through the corresponding chemical characterization and cytotoxic activity data. Therefore, the acetone extract from P. madagascariensis prepared by ultrasound extraction method revealed potent antibacterial activity against Gram-positive bacteria (1.95 < minimum inhibitory concentration (MIC) < 7.81 µg/mL), including a methicillin-resistant Staphylococcus aureus (MRSA) strain. Additionally, acetone extracts from both P. madagascariensis and P. neochilus exhibited relevant antibacterial activity against Gram-negative Klebsiella pneumonia (0.48 < MIC < 3.91 µg/mL), validating the traditional uses of such plants as anti-infectious agents. All methanolic extracts showed potent antioxidant effects at 100 µg/mL measured as their radical scavenging activity (60.8-89.0%) in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The P. madagascariensis extract obtained by maceration in acetone showed moderate cytotoxic effects in the MDA-MB-231 cell line (triple negative human breast carcinoma). The extract concentration that caused a 50% inhibition in cell viability (IC50) was 64.52 µg/mL. All extracts in this comparative study were profiled by high-performance liquid chromatography-HPLC with a diode-array detector-DAD (HPLC-DAD) and the main known bioactive components were identified in each extract, which included polyphenols (caffeic 1, chlorogenic 2 and rosmarinic 3 acids), abietane diterpenes (7α-acetoxy-6ß-hydroxyroyleanone 4 and coleon U 5) and flavone glycosides (rutin 6 and naringin 7).


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plectranthus/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Free Radical Scavengers/pharmacology , Humans , Microbial Sensitivity Tests , Picrates/chemistry , Plant Extracts/chemistry
20.
Biofouling ; 34(8): 880-892, 2018 09.
Article in English | MEDLINE | ID: mdl-30362371

ABSTRACT

Glycyrrhiza glabra L. is considered an important source of bioactive compounds. This study aimed at the development of an efficient solution for the treatment of oral candidiasis. Several extracts of Glycyrrhiza glabra L. were prepared using different solvents and their potential in vitro antifungal activity was assessed. Ethanolic extracts showed the most promising results against C. albicans. This extract was incorporated into mucoadhesive nanoparticles (PLA, PLGA and alginate), which were further included in an oral gel, an oral film and a toothpaste, respectively. The results showed that nanoparticles were successfully produced, presenting a mean size among 100-900 nm with high encapsulation efficiency. In vitro studies showed that the most bioadhesive formulation was the oral film with extract-loaded PLGA nanoparticles, followed by the toothpaste with extract-loaded alginate nanoparticles and the oral gel with extract-loaded PLA nanoparticles.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Glycyrrhiza/chemistry , Nanostructures/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Dosage Forms , Mechanical Phenomena , Mouth Mucosa/drug effects , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL