Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Biol Trace Elem Res ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329568

ABSTRACT

The objective of this study was to determine how different sources of Zn, Mn, and Cu in the feed without and with phytase affect prececal myo-inositol hexakisphosphate (InsP6) breakdown to myo-inositol (MI), prececal P digestibility, bone mineralization, and expression of mineral transporters in the jejunum of broiler chickens. A total of 896 male broiler chicks (Cobb 500) were distributed to 7 diets with 8 replicate pens (16 birds per floor pen). Experimental diets were fed from day 0 to 28. Diets were without or with phytase supplementation (0 or 750 FTU/kg) and were supplemented with three different trace mineral sources (TMS: sulfates, oxides, or chelates) containing 100 mg/kg Zn, 100 mg/kg Mn, and 125 mg/kg Cu. Prececal InsP6 disappearance and P digestibility were affected by interaction (phytase × TMS: P ≤ 0.010). In diets without phytase supplementation, prececal InsP6 disappearance and P digestibility were greater (P ≤ 0.001) in birds fed chelated minerals than in birds fed sulfates or oxides. However, no differences were observed between TMS in diets with phytase supplementation. Ileal MI concentration was increased by exogenous phytase but differed depending on TMS (phytase × TMS: P ≤ 0.050). Tibia ash concentration as well as Zn and Mn concentration in tibia ash were increased by phytase supplementation (P < 0.010), but the Cu concentration in tibia ash was not (P > 0.050). Gene expression of the assayed mineral transporters in the jejunum was not affected by diet (P > 0.050), except for Zn transporter 5 (phytase × TMS: P = 0.024). In conclusion, the tested TMS had minor effects on endogenous phytate degradation in the digestive tract of broiler chickens. However, in phytase-supplemented diets, the choice of TMS was not relevant to phytate degradation under the conditions of this study.

2.
Poult Sci ; 102(12): 103160, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37856908

ABSTRACT

This study aimed to determine the effect of Zn source and dietary level on intestinal myo-inositol hexakisphosphate (InsP6) disappearance, intestinal accumulation of lower InsP and myo-inositol (MI), prececal mineral digestibility, bone mineralization, and Zn status of broilers without and with exogenous phytase in the feed. Male Ross 308 broilers were allocated in groups of 10 to 8 treatments with 8 pens each. Experimental diets were fed from d 7 to d 28 and contained 33 mg/kg dry matter plant-intrinsic Zn. Experimental factors were phytase supplementation (0 or 750 FTU/kg) and Zn source (none [0 mg/kg Zn], Zn-sulfate [30 mg/kg Zn], Zn-oxide [30 mg/kg Zn]). Additional treatments with 90 mg/kg Zn as Zn-sulfate or Zn-oxide and phytase were included to test the effect of Zn level. No Zn source or Zn level effects were observed for ADG, feed conversion ratio, prececal P digestibility, intestinal InsP6 disappearance, and bone ash concentration. However, those measurements were increased by exogenous phytase (P < 0.001), except the feed conversion ratio, which was decreased (P < 0.001). Ileal MI concentrations were affected by phytase × Zn source interaction (P < 0.030). Birds receiving exogenous phytase and Zn supplementation had the highest MI concentrations regardless of exogenous Zn source, whereas MI concentrations were intermediate for birds receiving exogenous phytase only. Exogenous phytase and exogenous Zn source increased the Zn concentration in bone and blood of broilers (P < 0.001). In conclusion, measures of exogenous phytase efficacy were not affected by phytase × Zn source interaction. Further studies are needed to rule out an effect from Zn sources other than those tested in this study and to investigate the effect of Zn supplementation on endogenous phosphatases. The missing effect of increasing Zn supplementation from 30 to 90 mg/kg in phytase-supplemented diets gives reason to reconsider the Zn supplementation level used by the industry.


Subject(s)
6-Phytase , Phytic Acid , Animals , Phytic Acid/metabolism , Chickens/metabolism , 6-Phytase/metabolism , Zinc/metabolism , Calcification, Physiologic , Dietary Supplements , Diet/veterinary , Inositol/metabolism , Oxides/pharmacology , Sulfates/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
3.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37526942

ABSTRACT

Variations in the dietary Ca concentration may affect inositol phosphate (InsP) degradation, and thereby, P digestibility in pigs. This study assessed the effects of dietary Ca concentration and exogenous phytase on InsP degradation, nutrient digestion and retention, blood metabolites, and microbiota composition in growing pigs with ileal cannulation. In a completely randomized row-column design with four periods, eight ileal-cannulated barrows (initial body weight 27 kg) were fed four corn-soybean- and rapeseed meal-based diets containing 5.5 or 8.5 g Ca/kg dry matter (DM), with or without 1,500 FTU of an exogenous hybrid-6-phytase/kg diet. No mineral P was added and the P concentration in the feed was 4.8 g P/kg DM. Prececal InsP6 disappearance in pigs fed diets containing exogenous phytase was lower (P = 0.022) with additional Ca than without. Concentrations of InsP2-4 isomers and myo-inositol in the distal ileal digesta and prececal P digestibility were greater (P < 0.001) with exogenous phytase than without exogenous phytase. In feces, InsP6 disappearance was lower (P < 0.002) and concentration of InsP5 and InsP4 isomers was higher (P ≤ 0.031) with additional Ca compared to without additional Ca. The prececal amino acid digestibility, energy digestibility, and hindgut disappearance of energy did not differ. The Shannon diversity index of the microbiota in the distal ileal digesta and feces was similar among the diets but was lower in the distal ileal digesta than in the feces (P < 0.001). Permutation analysis of variance revealed no dietary differences between the bacterial groups within the ileal digesta and fecal samples (P > 0.05). In conclusion, additional Ca reduced the effect of exogenous phytase on prececal InsP6 degradation. Endogenous InsP degradation was impaired by additional Ca only in the hindgut but the abundance of bacterial genera in feces was not affected.


The dietary calcium concentration can influence the release of phosphorus from phytate in growing pigs. This study assessed the effects of dietary calcium and exogenous phytase on inositol phosphate (InsP) degradation and nutrient digestibility in ileal-cannulated, growing pigs. The phosphorus, calcium, and myo-inositol concentrations in the blood, microbiota composition in the ileal digesta and feces, and volatile fatty acid concentrations in the feces were also evaluated. Additional dietary calcium decreased prececal inositol hexakisphosphate (InsP6) disappearance, but only with exogenous phytase. Concentrations of InsP2-4 isomers and myo-inositol in the ileal digesta and prececal phosphorus digestibility were greater with exogenous phytase, but not affected by dietary calcium concentration. In contrast, fecal InsP6 disappearance was lower and the concentration of InsP4-5 isomers in feces was greater with additional dietary calcium. Regarding microbiota, the Shannon diversity index was lower in ileal digesta than in feces but was unaffected by dietary calcium concentration or exogenous phytase. In conclusion, dietary calcium concentration is relevant for phytate disappearance in feces, but not in the ileal digesta. However, when exogenous phytase is used, the dietary calcium concentration is important because prececal phytate degradation is changed.


Subject(s)
6-Phytase , Gastrointestinal Microbiome , Phosphorus, Dietary , Animals , 6-Phytase/metabolism , Animal Feed/analysis , Calcium, Dietary/metabolism , Diet/veterinary , Dietary Supplements/analysis , Digestion , Inositol Phosphates , Minerals/metabolism , Phosphorus, Dietary/metabolism , Phytic Acid/metabolism , Swine
4.
J Sci Food Agric ; 103(15): 7333-7342, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37486290

ABSTRACT

Phytase supplementation is gaining importance in animal nutrition because of its effect on phosphorus (P) digestibility and the increasing relevance of P for sustainable production. The potential inhibitors of phytase efficacy and phytate degradation, such as calcium (Ca) and zinc (Zn), have been a subject of intense research. This review focuses on the interactions of Zn with phytate and phytase in the digestive tract of poultry and pigs, with an emphasis on the effects of Zn supplementation on phytase efficacy and P digestibility. In vitro studies have shown the inhibitory effect of Zn on phytase efficacy. However, relevant in vivo studies are scarce and do not show consistent results for poultry and pigs. The results could be influenced by different factors, such as diet composition, amount of Zn supplement, mineral concentrations, and phytase supplementation, which limit the comparability of studies. The chosen response criteria to measure phytase efficacy, which is mainly tibia ash, could also influence the results. Compared to poultry, the literature findings are somewhat more conclusive in pigs, where pharmacological Zn doses (≥ 1000 mg kg-1 Zn) appear to reduce P digestibility. To appropriately evaluate the effects of non-pharmacological Zn doses, further studies are needed that provide comprehensive information on their experimental setup and include measurements of gastrointestinal phytate degradation to better understand the mechanisms associated with Zn and phytase supplements. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
6-Phytase , Zinc , Swine , Animals , Zinc/metabolism , 6-Phytase/metabolism , Phytic Acid/metabolism , Poultry/metabolism , Digestion , Animal Feed/analysis , Dietary Supplements , Diet , Gastrointestinal Tract/metabolism
5.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37335891

ABSTRACT

Fermentable fiber may increase endogenous losses of phosphorus (EPL) and amino acids (AA), thereby reducing apparent nutrient digestibility. Acacia gum with medium-to-high fermentability and low viscosity was increasingly included in diets to investigate its effect on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients, gross energy (GE), and standardized total tract digestibility (STTD) of P in growing pigs. A control diet (49% cornstarch; 18% bovine plasma protein) was formulated to measure basal EPL. Three additional diets were formulated to include 2.5%, 5.0%, or 7.5% acacia gum at the expense of cornstarch. Diets contained 16.1% to 17.4% CP and 0.31% to 0.33% total P (DM-basis). The four diets were fed to eight ileal-cannulated barrows (initial BW, 54.6 kg) for four 9 d periods in a double 4 × 4 Latin square. Apparent hindgut fermentation (AHF) was calculated as ATTD minus AID. Feeding increasing acacia gum quadratically affected (P < 0.05) AID of DM, GE, linearly decreased (P < 0.05) ATTD of DM, crude protein (CP), GE, digestible (DE) and predicted net energy (NE) value of diets, and linearly increased (P < 0.001) AHF of DM and GE. Increasing acacia gum did not affect AID and standardized ileal digestibility (SID) of CP and AA. Basal EPL was 377 mg/kg DM intake (DMI) and increasing acacia gum linearly increased (P < 0.05) total tract EPL. Increasing acacia gum linearly decreased (P < 0.05) diet ATTD of P, and STTD of P based on either the calculated EPL or NRC (2012) recommended value (190 mg P/kg DMI). Increasing acacia gum did not affect AID and ATTD of Ca of diets. In conclusion, feeding increasing dietary fermentable, low-viscous acacia gum decreased diet AID and ATTD of DM and GE, but did not affect AID or SID of CP and AA. Increasing acacia gum decreased ATTD of P, which might have been due to increased specific endogenous losses of P in the total tract of growing pigs.


Fermentable fiber may increase endogenous losses of phosphorus (EPL) and amino acids (AA), thereby reducing nutrient digestibility. This study assessed effects of feeding increasing acacia gum with medium-to-high fermentability and low viscosity. Eight barrows cannulated at the terminal ileum were fed a control diet to measure basal endogenous P losses and three diets including 2.5%, 5.0%, or 7.5% acacia gum. Increasing acacia gum quadratically decreased diet ileal digestibility of dry matter (DM), gross energy (GE), linearly decreased diet total tract digestibility of DM, crude protein (CP), GE, and linearly increased hindgut fermentation of DM and GE. Increasing acacia gum linearly increased total tract endogenous P losses. Increasing acacia gum linearly decreased diet total tract digestibility of P, and standardized total tract digestibility of P calculated based on the calculated endogenous P losses or table values (NRC, 2012; 190 mg P/kg DMI). In conclusion, increasing dietary fermentable, low-viscous acacia gum decreased diet ileal and total tract digestibility of DM and GE, but did not affect ileal digestibility of CP and most AA. Increasing acacia gum inclusion reduced total tract digestibility of P, which might have been due to increased specific endogenous losses of P in the total tract of growing pigs.


Subject(s)
Digestion , Phosphorus , Animals , Cattle , Swine , Phosphorus/metabolism , Gum Arabic/metabolism , Gum Arabic/pharmacology , Diet/veterinary , Dietary Fiber/metabolism , Amino Acids/metabolism , Nutrients , Starch/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Ileum/metabolism
6.
Poult Sci ; 102(3): 102457, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36641994

ABSTRACT

A comparison between 3-wk-old female turkeys (B.U.T. 6) and broilers (Ross 308) was performed to study the effects of species, dietary P, Ca, and phytase levels on gut mucosal phosphatase activity, myo-inositol hexakisphosphate (InsP6) degradation along the digestive tract, digestibility of P, Ca, and amino acids, and concentrations of myo-inositol in the digesta and blood. The experimental diets were corn-soybean meal-based and identical for both species. Two dietary P and Ca concentrations (CaP-: 4.1 g P/kg, 5.5 g Ca/kg and CaP+: 9.0 g P/kg, 12.0 g Ca/kg) and 2 levels of phytase supplementation (0 and 1,500 FTU/kg) were used in a 2 × 2 factorial design and fed to the animals for 7 d in their third week of age. Each diet was randomly assigned to 6 broiler and 6 turkey pens, with 10 birds each. After slaughter, blood, digesta from the crop, gizzard, duodenum, lower ileum, and mucosa from the jejunum were collected. When fed CaP- without phytase supplementation, there were no differences between species in gut mucosal phosphatase activity, prececal InsP6 disappearance, and P and Ca digestibility, indicating a similar intrinsic capacity for phytate degradation in both species. When fed CaP+ without phytase supplementation, turkeys showed higher prececal InsP6 disappearance than broilers. Phytase supplementation increased prececal InsP6 disappearance and digestibility of P and Ca in both species. However, the phytase-induced increase in prececal InsP6 disappearance was more pronounced in broilers than in turkeys, possibly due to more adequate conditions for phytase activity in the broiler crop. In broilers, phytase supplementation increased amino acid digestibility overall, whereas, in turkeys, it increased with CaP+ and decreased with CaP-. In addition, the relationship between myo-inositol concentration in the ileum and blood differed between species, indicating differences in myo-inositol metabolism. It was concluded that 3-week-old turkeys and broilers differ in nutrient digestibility and InsP degradation in some segments of the digestive tract but have similar endogenous InsP6 degradation when fed low P and Ca diets.


Subject(s)
6-Phytase , Phytic Acid , Animals , Female , Phytic Acid/metabolism , Phosphorus/metabolism , Dietary Supplements , Chickens/metabolism , 6-Phytase/metabolism , Turkeys/metabolism , Digestion , Diet/veterinary , Inositol/metabolism , Mucous Membrane , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
7.
Poult Sci ; 102(4): 102476, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36716675

ABSTRACT

Female turkeys (B.U.T. 6) and broilers (Ross 308) were compared at 6 wk of age to evaluate the effects of species, dietary P, Ca, and phytase levels on myo-inositol hexakisphosphate (InsP6) degradation along the digestive tract, gut mucosal phosphatase activity, P and Ca digestibility, and myo-inositol concentrations in the digesta and blood. The environmental conditions and experimental corn-soybean meal-based diets were the same for both species. Four diets with either combination of 2 levels of P and Ca (CaP-: 4.0 g P/kg, 5.4 g Ca/kg and CaP+: 6.0 g P/kg, 8.0 g Ca/kg) and 2 levels of phytase supplementation (0 and 1,500 FTU/kg) were fed to the animals for 7 d at their sixth wk of age. Each diet was randomly assigned to 6 pens per species, with 10 birds each. After slaughter, blood, digesta from the crop, gizzard, duodenum, lower ileum, and jejunal mucosa were collected. Endogenous mucosal phosphatase activity in the jejunum was higher in turkeys than in broilers. Prececal InsP6 disappearance was also higher in turkeys than in broilers when phytase was not supplemented. Phytase supplementation led to a higher prececal InsP6 disappearance in broilers than in turkeys, likely due to different crop conditions such as moisture content. However, prececal P digestibility was higher in turkeys than broilers. Different relationships between myo-inositol concentration in the ileum digesta and blood were found, depending on the species. A comparison of the results with those obtained in 3-wk-old birds of a companion study showed that in diets with low Ca and P levels, prececal InsP6 disappearance increased with age in turkeys, but not in broilers. This coincided with changes in the conditions of the digestive tract, such as the water content in the crop, gizzard pH, and mucosal phosphatase activity. In conclusion, occurrence of differences in phytate degradation between turkeys and broilers, fed the same feed, depended on age and can be explained by different physiological development of the digestive tract.


Subject(s)
6-Phytase , Phytic Acid , Female , Animals , Phytic Acid/metabolism , Phosphorus/metabolism , Chickens/physiology , Turkeys/metabolism , 6-Phytase/metabolism , Digestion , Diet/veterinary , Dietary Supplements , Minerals/metabolism , Inositol/metabolism , Mucous Membrane , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
8.
Poult Sci ; 102(2): 102344, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36476680

ABSTRACT

The objective of this contribution was to summarize from scientific literature the optimal concentration of nonphytate phosphorus (NPP) in feed for laying hens. The considered studies were one meta-analysis from 2012 and original studies published since then. Dietary treatments in the studies included variation in supplementation with mineral P sources and phytase. The studies investigated different periods of production and varied in duration but data were insufficient to analyze such factors in a systematic way. No study showed a positive effect on performance and eggshell when the NPP concentration was increased above 2.2 g NPP/kg of feed without the use of phytase. At such level, no consistent impairment of various bone quality traits were found but only few studies on bone quality traits were published. Overall, the data suggested that not more than 2.2 g NPP/kg of feed is needed for laying hens in different stages of production. This value can be reduced when phytase is added to the feed. Such reduction may differ depending on factors such as phytate content of the feed and phytase dosage. However, data are insufficient for calculating precise values of reduction. While phytate degradation in laying hens was markedly increased by phytase supplementation in several studies, effects of phytase supplementation on performance and bone traits in laying hens were less conclusive probably because the hens were supplied more than their NPP requirement. Transition to a system based on digestible P for laying hens similar to broiler chickens may support more precise P nutrition and more sustainable egg production in the future.


Subject(s)
6-Phytase , Phosphorus, Dietary , Animals , Female , Phosphorus/metabolism , Chickens/metabolism , Phytic Acid/metabolism , Animal Feed/analysis , Ovum/metabolism , Diet/veterinary , Phosphorus, Dietary/metabolism , Dietary Supplements
9.
Front Physiol ; 13: 951350, 2022.
Article in English | MEDLINE | ID: mdl-36213242

ABSTRACT

The nutrient availability and supplementation of dietary phosphorus (P) and calcium (Ca) in avian feed, especially in laying hens, plays a vital role in phytase degradation and mineral utilization during the laying phase. The required concentration of P and Ca peaks during the laying phase, and the direct interaction between Ca and P concentration shrinks the availability of both supplements in the feed. Our goal was to characterize the active microbiota of the entire gastrointestinal tract (GIT) (crop, gizzard, duodenum, ileum, caeca), including digesta- and mucosa-associated communities of two contrasting high-yielding breeds of laying hens (Lohmann Brown Classic, LB; Lohmann LSL-Classic, LSL) under different P and Ca supplementation levels. Statistical significances were observed for breed, GIT section, Ca, and the interaction of GIT section x breed, P x Ca, Ca x breed and P x Ca x breed (p < 0.05). A core microbiota of five species was detected in more than 97% of all samples. They were represented by an uncl. Lactobacillus (average relative abundance (av. abu.) 12.1%), Lactobacillus helveticus (av. abu. 10.8%), Megamonas funiformis (av. abu. 6.8%), Ligilactobacillus salivarius (av. abu. 4.5%), and an uncl. Fusicatenibacter (av. abu. 1.1%). Our findings indicated that Ca and P supplementation levels 20% below the recommendation have a minor effect on the microbiota compared to the strong impact of the bird's genetic background. Moreover, a core active microbiota across the GIT of two high-yielding laying hen breeds was revealed for the first time.

10.
Front Microbiol ; 13: 889618, 2022.
Article in English | MEDLINE | ID: mdl-35836418

ABSTRACT

This study aimed to investigate the effects of two brown Icelandic seaweed samples (Ascophyllum nodosum and Fucus vesiculosus) on in vitro methane production, nutrient degradation, and microbiota composition. A total mixed ration (TMR) was incubated alone as control or together with each seaweed at two inclusion levels (2.5 and 5.0% on a dry matter basis) in a long-term rumen simulation technique (Rusitec) experiment. The incubation period lasted 14 days, with 7 days of adaptation and sampling. The methane concentration of total gas produced was decreased at the 5% inclusion level of A. nodosum and F. vesiculosus by 8.9 and 3.6%, respectively (P < 0.001). The total gas production was reduced by all seaweeds, with a greater reduction for the 5% seaweed inclusion level (P < 0.001). Feed nutrient degradation and the production of volatile fatty acids and ammonia in the effluent were also reduced, mostly with a bigger effect for the 5% inclusion level of both seaweeds, indicating a reduced overall fermentation (all P ≤ 0.001). Microbiota composition was analyzed by sequencing 16S rRNA amplicons from the rumen content of the donor cows, fermenter liquid and effluent at days 7 and 13, and feed residues at day 13. Relative abundances of the most abundant methanogens varied between the rumen fluid used for the start of incubation and the samples taken at day 7, as well as between days 7 and 13 in both fermenter liquid and effluent (P < 0.05). According to the differential abundance analysis with q2-ALDEx2, in effluent and fermenter liquid samples, archaeal and bacterial amplicon sequence variants were separated into two groups (P < 0.05). One was more abundant in samples taken from the treatment without seaweed supplementation, while the other one prevailed in seaweed supplemented treatments. This group also showed a dose-dependent response to seaweed inclusion, with a greater number of differentially abundant members between a 5% inclusion level and unsupplemented samples than between a 2.5% inclusion level and TMR. Although supplementation of both seaweeds at a 5% inclusion level decreased methane concentration in the total gas due to the high iodine content in the seaweeds tested, the application of practical feeding should be done with caution.

11.
Br J Nutr ; : 1-12, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35416139

ABSTRACT

Sixty growing male pigs were used to test the hypothesis that high dietary Ca content reduces P absorption to a greater extent in microbial phytase-supplemented diets via reducing inositol phosphate (IP) degradation and enhancing P precipitation. Pigs were equally allotted over diets with three Ca contents 2·0, 5·8 and 9·6 g/kg with or without microbial phytase (0 v. 500 FTU/kg) in a 2 × 3 factorial arrangement. Faeces and urine were collected at the end of the 21-d experimental period. Subsequently, pigs were euthanised and digesta quantitatively collected from different gastrointestinal tract (GIT) segments. Increasing dietary Ca content reduced apparent P digestibility in all GIT segments posterior to the stomach (P < 0·001), with greater effect in phytase-supplemented diets in the distal small intestine (Pinteraction = 0·007) and total tract (Pinteraction = 0·023). Nonetheless, increasing dietary Ca to 5·8 g/kg enhanced P retention, but only in phytase-supplemented diets. Ileal IP6 degradation increased with phytase (P < 0·001) but decreased with increasing dietary Ca content (P = 0·014). Proportion of IP esters in total IP (∑IP) indicated that IP6/∑IP was increased while IP4/∑IP and IP3/∑IP were reduced with increasing dietary Ca content and also with a greater impact in phytase-supplemented diets (Pinteraction = 0·025, 0·018 and 0·009, respectively). In all GIT segments, P solubility was increased with phytase (P < 0·001) and tended to be reduced with dietary Ca content (P < 0·096). Measurements in GIT segments showed that increasing dietary Ca content reduced apparent P digestibility via reducing IP degradation and enhancing P precipitation, with a greater impact in phytase-supplemented diets due to reduced IP degradation.

12.
Genet Sel Evol ; 54(1): 20, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35260076

ABSTRACT

BACKGROUND: Phosphorus is an essential nutrient in all living organisms and, currently, it is the focus of much attention due to its global scarcity, the environmental impact of phosphorus from excreta, and its low digestibility due to its storage in the form of phytates in plants. In poultry, phosphorus utilization is influenced by composition of the ileum microbiota and host genetics. In our study, we analyzed the impact of host genetics on composition of the ileum microbiota and the relationship of the relative abundance of ileal bacterial genera with phosphorus utilization and related quantitative traits in Japanese quail. An F2 cross of 758 quails was genotyped with 4k genome-wide single nucleotide polymorphisms (SNPs) and composition of the ileum microbiota was characterized using target amplicon sequencing. Heritabilities of the relative abundance of bacterial genera were estimated and quantitative trait locus (QTL) linkage mapping for the host was conducted for the heritable genera. Phenotypic and genetic correlations and recursive relationships between bacterial genera and quantitative traits were estimated using structural equation models. A genomic best linear unbiased prediction (GBLUP) and microbial (M)BLUP hologenomic selection approach was applied to assess the feasibility of breeding for improved phosphorus utilization based on the host genome and the heritable part of composition of the ileum microbiota. RESULTS: Among the 59 bacterial genera examined, 24 showed a significant heritability (nominal p ≤ 0.05), ranging from 0.04 to 0.17. For these genera, six genome-wide significant QTL were mapped. Significant recursive effects were found, which support the indirect host genetic effects on the host's quantitative traits via microbiota composition in the ileum of quail. Cross-validated microbial and genomic prediction accuracies confirmed the strong impact of microbial composition and host genetics on the host's quantitative traits, as the GBLUP accuracies based on the heritable microbiota-mediated components of the traits were similar to the accuracies of conventional GBLUP based on genome-wide SNPs. CONCLUSIONS: Our results revealed a significant effect of host genetics on composition of the ileal microbiota and confirmed that host genetics and composition of the ileum microbiota have an impact on the host's quantitative traits. This offers the possibility to breed for improved phosphorus utilization based on the host genome and the heritable part of composition of the ileum microbiota.


Subject(s)
Coturnix , Gastrointestinal Microbiome , Ileum/microbiology , Phosphorus/metabolism , Animals , Coturnix/genetics , Coturnix/microbiology , Genome , Genotype , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
13.
Arch Anim Nutr ; 75(6): 450-464, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34724855

ABSTRACT

The objective of this study was to investigate the effect of variation in wheat-derived phytase activity on myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) degradation, inositol phosphate (InsP) isomer concentration and phosphorus (P) digestibility in pigs fed wheat-based diets. Additional effects of a microbial phytase supplementation were also studied. Three wheat genotypes (W1-W3) with an analysed phytase activity between 2760 and 3700 FTU/kg were used to formulate four experimental diets that included soybean meal and rapeseed meal but did not contain a mineral P supplement. DietW1-DietW3 only differed in the included wheat genotypes (W1-W3) at an inclusion level of 400 g/kg. DietW3+ contained W3 and a commercial 6-phytase supplementation at 500 FTU/kg diet. Eight barrows with an initial body weight of 27 kg were fitted with a simple T-cannula at the distal ileum and assigned to the four dietary treatments in a completely randomised row column design. The experiment included four periods of 12 d each. The first 5 d of each period were for diet adaptation, followed by collection of faeces (4 d), ileal digesta (2 d), and blood (last day). In DietW1-DietW3, the mean precaecal (pc) InsP6 disappearance was 48% and the mean pc P digestibility was 37% without a significant effect of the wheat genotype. The InsP6 disappearance measured in the faeces was close to complete in all treatments, and faecal P digestibility was not significantly affected by the wheat genotype (36% overall). The addition of microbial phytase caused a significant increase in pc InsP6 degradation (to 79%) and pc and total tract P digestibility (to 53% and 52%, respectively). The concentration of InsP6 degradation products in ileal digesta was not significantly affected by the wheat genotype, except for that of Ins(1,2,3,4,6)P5 and myo-inositol, which were higher in DietW3 than in DietW1 and DietW2. The added microbial phytase significantly reduced the concentration of InsP5 isomers in the ileal digesta and increased the concentrations of lower InsP isomers and myo-inositol. There were no significant effects of the added microbial phytase on pc amino acid digestibility; however, the wheat genotype exerted significant effects on the pc digestibility of Cys, Gly and Val. It was concluded that an increase in the intrinsic phytase activity of wheat achieved by crossbreeding was not reflected in InsP6 degradation and P digestibility in pigs fed wheat-based diets.


Subject(s)
6-Phytase , Phosphorus, Dietary , 6-Phytase/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Digestion , Phosphorus , Phosphorus, Dietary/metabolism , Phytic Acid/metabolism , Phytic Acid/pharmacology , Swine , Triticum/metabolism
14.
Curr Dev Nutr ; 5(8): nzab103, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34447898

ABSTRACT

BACKGROUND: Responses to dietary calcium (Ca) and supplemented phytase on prececal amino acid digestibility (pcAAD) in broiler chickens vary among studies. The variation may arise from the dietary acid-binding capacity (ABC) that influences the activity of enzymes in the digestive tract and from microbial activity. OBJECTIVE: This study aimed to investigate whether the ABC influences phytase effects on pcAAD and whether microbial activity contributes to this. METHODS: Male Ross 308 broiler chickens were provided 1 of 12 diets in 72 pens (15/pen) from day 16 of age until the end of the experiment on days 21 or 22. In a 3 × 2 × 2-factorial arrangement, the ABC was varied by replacing calcium carbonate (CaCO3) with Ca-formate or by adding formic acid to CaCO3-containing diets, and contained 5.6 or 8.2 g Ca/kg and 0 or 1500 phytase units/kg. The ileum content was collected for pcAAD measurement and microbial community composition was used to investigate whether changes in pcAAD are related to the microbiota. RESULTS: Three-factor ANOVA showed that reducing the ABC increased pcAAD (average 1.1 percentage points) and no significant interaction of the ABC with Ca concentration and phytase supplementation including 3-way interactions. Without phytase, increasing dietary Ca concentration decreased pcAAD (average 3.1 percentage points). Phytase supplementation increased pcAAD (average 2.1 and 5.0 percentage points at low and high Ca concentrations, respectively), to reach the same level for both Ca concentrations. Microbial functional predictions pointed towards an influence of the microbiota in the crop and ileum content on amino acid concentrations, as indicated by different relative abundances of predicted genes related to amino acid biosynthesis, degradation, and metabolism. CONCLUSIONS: Dietary Ca concentrations but not the ABC modulates the effect of supplemented phytase on pcAAD in broiler chickens. The microbiota might contribute to differences in pcAAD by changing the amino acid composition of the digesta. The extent of this effect is still unknown.

15.
BMC Genomics ; 22(1): 485, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34187361

ABSTRACT

BACKGROUND: Calcium (Ca) and phosphorus (P) are essential nutrients that are linked to a large array of biological processes. Disturbances in Ca and P homeostasis in chickens are associated with a decline in growth and egg laying performance and environmental burden due to excessive P excretion rates. Improved utilization of minerals in particular of P sources contributes to healthy growth while preserving the finite resource of mineral P and mitigating environmental pollution. In the current study, high performance Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) hens at peak laying performance were examined to approximate the consequences of variable dietary Ca and P supply. The experimental design comprised four dietary groups with standard or reduced levels of either Ca or P or both (n = 10 birds per treatment group and strain) in order to stimulate intrinsic mechanisms to maintain homeostasis. Jejunal transcriptome profiles and the systemic endocrine regulation of mineral homeostasis were assessed (n = 80). RESULTS: Endogenous mechanisms to maintain mineral homeostasis in response to variations in the supply of Ca and P were effective in both laying hen strains. However, the LSL and LB appeared to adopt different molecular pathways, as shown by circulating vitamin D levels and strain-specific transcriptome patterns. Responses in LSL indicated altered proliferation rates of intestinal cells as well as adaptive responses at the level of paracellular transport and immunocompetence. Endogenous mechanisms in LB appeared to involve a restructuring of the epithelium, which may allow adaptation of absorption capacity via improved micro-anatomical characteristics. CONCLUSIONS: The results suggest that LSL and LB hens may exhibit different Ca, P, and vitamin D requirements, which have so far been neglected in the supply recommendations. There is a demand for trial data showing the mechanisms of endogenous factors of Ca and P homeostasis, such as vitamin D, at local and systemic levels in laying hens.


Subject(s)
Calcium, Dietary , Chickens , Animals , Female , Animal Feed/analysis , Calcium , Chickens/genetics , Diet , Jejunum , Oviposition , Phosphorus
16.
Sci Rep ; 11(1): 13534, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188134

ABSTRACT

Phosphorus (P) and calcium (Ca) are critical for egg production in laying hens. Most of P in plant-based poultry diet is bound as phytic acid and needs to be hydrolysed before absorption. To increase P bioavailability, exogenous phytases or bioavailable rock phosphate is added in feed. There is growing evidence of the importance of miRNAs as the epicentre of intestinal homeostasis and functional properties. Therefore, we demonstrated the expression of miRNA profiles and the corresponding target genes due to the different levels of P (recommended vs. 20% reduction) and/or Ca (recommended vs. 15% reduction) in feed. Jejunal miRNA profiles of Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) laying hens strains were used (n = 80). A total of 34 and 76 miRNAs were differentially expressed (DE) in the different diet groups within LSL and LB strains respectively. In LSL, the DE miRNAs and their targets were involved in calcium signaling pathway, inositol phosphate metabolism, and mitochondrial dysfunction. Similarly, in LB miRNAs targets were enriched in metabolic pathways such as glutathione metabolism, phosphonate metabolism and vitamin B6 metabolism. Our results suggest that both strains employ different intrinsic strategies to cope with modulated P and Ca supply and maintain mineral homeostasis.


Subject(s)
Animal Feed , Calcium/pharmacology , Chickens/metabolism , Gene Expression Regulation , Jejunum/metabolism , MicroRNAs/biosynthesis , Phosphorus/pharmacology , RNA, Messenger/biosynthesis , Animals , Female
17.
Poult Sci ; 100(6): 101133, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33940282

ABSTRACT

The objective of this study was to compare the effects of graded inclusions of 2 phytase products and a mineral P source in broiler chickens using different response traits, including ileum microbiota composition. Eleven experimental diets were used. These were a low-P basal diet and diets supplemented with increasing levels of dicalcium phosphate (DCP), Natuphos E 5000 G (NE), or Natuphos 5000 G (N). The performance traits, prececal P digestibility, and tibia and foot ash results were subjected to regression analysis and slope ratios were used to compare the supplements based on the measured evaluation traits. In the microbiota analysis, total nucleic acids were extracted and the 16S rRNA gene was targeted for use in the amplicon sequencing process. Phylogenetic analysis was performed using Mothur, followed by a multivariate statistical analysis. The various response traits caused different estimates of relative efficacy. The mean results of all the response traits showed that a 1.75-fold increase in the activity of N was needed to achieve the same response as NE and the variability among the detected traits ranged from 1.59 (prececally digestible P intake) to 1.91 (amount of tibia ash). The mean slope ratio between DCP and NE was 311 and varied between 208 (ADG) and 349 (foot ash concentration). The mean slope ratio for phytase N with DCP was 552 and varied from 357 (ADG) to 640 (tibia ash concentration). The ileum microbiota composition was not different among the diets. A similar composition was driven in the abundance of Lactobacillus crispatus, Lactobacillus salivarius, and Lactobacillus gallinarum. The results suggest that different response traits cause markedly different estimates of relative phytase efficacy.


Subject(s)
6-Phytase , Microbiota , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Chickens , Diet/veterinary , Dietary Supplements/analysis , Digestion , Ileum , Lactobacillus , Phylogeny , RNA, Ribosomal, 16S/genetics
18.
Anim Microbiome ; 3(1): 23, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33722307

ABSTRACT

BACKGROUND: Diet acidification, dietary calcium (Ca) level, and phytase supplementation are known influences on the microbial community in the digestive tract and on phosphorus (P) utilization of broiler chickens. Effects of dietary factors and microbiota on P utilization may be linked because microorganisms produce enzymes that release P from phytate (InsP6), the main source of P in plant feedstuffs. This study aimed to detect linkages between microbiota and InsP6 degradation by acidifying diets (i.e., replacing Ca carbonate (CaCO3) by Ca formate or adding formic acid to CaCO3-containing diets), varying Ca levels, and supplementing phytase in a three-factorial design. We investigated i) the microbial community and pH in the digestive tract, ii) prececal (pc) P and Ca digestibility, and iii) InsP6 degradation. RESULTS: All factors under investigation influenced digesta pH and the microbiota composition. Predicted functionality and relative abundance of microorganisms indicated that diets influenced the potential contribution of the microbiota on InsP degradation. Values of InsP6 degradation and relative abundance of the strains Lactobacillus johnsonii and Lactobacillus reuteri were correlated. Phytase supplementation increased pc InsP6 disappearance, with differences between Ca levels, and influenced concentrations of lower inositol phosphate isomers in the digestive tract. Formic acid supplementation increased pc InsP6 degradation to myo-inositol. Replacing CaCO3 by Ca-formate and the high level of these Ca sources reduced pc InsP6 disappearance, except when the combination of CaCO3 + formic acid was used. Supplementing phytase to CaCO3 + formic acid led to the highest InsP6 disappearance (52%) in the crop and increased myo-inositol concentration in the ileum digesta. Supplementing phytase leveled the effect of high Ca content on pc InsP6 disappearance. CONCLUSIONS: The results point towards a contribution of changing microbial community on InsP6 degradation in the crop and up to the terminal ileum. This is indicated by relationships between InsP6 degradation and relative abundance of phosphatase-producing strains. Functional predictions supported influences of microbiota on InsP6 degradation. The extent of such effects remains to be clarified. InsP6 degradation may also be influenced by variation of pH caused by dietary concentration and solubility of the Ca in the feed.

19.
Open Biol ; 11(2): 200182, 2021 02.
Article in English | MEDLINE | ID: mdl-33593158

ABSTRACT

Improved utilization of phytates and mineral phosphorus (P) in monogastric animals contributes significantly to preserving the finite resource of mineral P and mitigating environmental pollution. In order to identify pathways and to prioritize candidate genes related to P utilization (PU), the genomic heritability of 77 and 80 trait-dependent expressed miRNAs and mRNAs in 482 Japanese quail were estimated and eQTL (expression quantitative trait loci) were detected. In total, 104 miR-eQTL (microRNA expression quantitative traits loci) were associated with SNP markers (false discovery rate less than 10%) including 41 eQTL of eight miRNAs. Similarly, 944 mRNA-eQTL were identified at the 5% False discovery rate threshold, with 573 being cis-eQTL of 36 mRNAs. High heritabilities of miRNA and mRNA expression coincide with highly significant eQTL. Integration of phenotypic data with transcriptome and microbiome data of the same animals revealed genetic regulated mRNA and miRNA transcripts (SMAD3, CAV1, ENNPP6, ATP2B4, miR-148a-3p, miR-146b-5p, miR-16-5p, miR-194, miR-215-5p, miR-199-3p, miR-1388a-3p) and microbes (Candidatus Arthromitus, Enterococcus) that are associated with PU. The results reveal novel insights into the role of mRNAs and miRNAs in host gut tissue functions, which are involved in PU and other related traits, in terms of the genetic regulation and inheritance of their expression and in association with microbiota components.


Subject(s)
Gastrointestinal Microbiome , MicroRNAs/genetics , Phosphorus/metabolism , RNA, Messenger/genetics , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Coturnix , Gene Regulatory Networks , Genes, Bacterial , MicroRNAs/metabolism , Quantitative Trait Loci , RNA, Messenger/metabolism , Transcriptome
20.
Poult Sci ; 99(11): 5972-5976, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33142514

ABSTRACT

As a constituent of animal cells, myo-inositol (MI) has been hypothesized to be crucial in several metabolic and regulatory pathways. Recently, it was shown that dietary phytase contributes to release of MI from phytate in the poultry digestive tract, increasing its systemic concentrations. This study investigated the activities of phosphatases in the jejunum and systemic plasma MI concentration in broilers not supplemented or supplemented with phytase through analyses based on modifications from commercial enzyme activity kits. Three hundred sixty male Ross 308 broilers were randomly allocated to 24 pens (15 birds per pen) in 4 dietary groups. The positive control group was fed with an adequate basal diet. The negative control group (NC) was fed with a reduced level of P and Ca. Groups Phy1500 and Phy3000 were fed with the NC diet plus 1,500 or 3,000 FTU of phytase per kilogram of feed, respectively. One bird per pen was selected for the measurement of jejunal phosphatase activity; MI concentration in plasma, the liver, and the kidney; and key MI enzyme concentrations (liver inositol monophosphatase 1 [IMPase 1] and kidney myo-inositol oxygenase [MIOX]). Endogenous phytase and alkaline phosphatase activity as well as IMPase 1 and MIOX expression were not statistically different among the dietary groups. The supplementation of 1500 FTU of phytase per kilogram of feed resulted in increase of plasma (P < 0.001) and kidney (P < 0.05) but not liver MI concentrations. The results indicated that systemic MI might reflect MI released from dietary sources; however, it did not appear to change expression of enzymes related to endogenous MI synthesis in the liver and catabolism in the kidney. New and larger studies are necessary to reach stronger evidence on the effects of dietary phytase on intestinal and systemic MI concentrations in broilers.


Subject(s)
6-Phytase , Animal Nutritional Physiological Phenomena , Dietary Supplements , Inositol , Jejunum , 6-Phytase/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Animals , Chickens , Diet/veterinary , Inositol/blood , Inositol/metabolism , Jejunum/drug effects , Jejunum/enzymology , Male , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL