Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Ontogenez ; 44(2): 91-100, 2013.
Article in Russian | MEDLINE | ID: mdl-23785846

ABSTRACT

We investigated dynamics of the content of 1-aminocyclopropane-l-carboxylic acid (ACC) and ethylene production in male gametophyte development and germination in fertile (self-compatible and self-incompatible) and sterile clones of petunia. Fertile male gametophyte development was accompanied by two peaks of ethylene production by anther tissues. The first peak occurred during the microspore development simultaneously with the degeneration of both the tapetal tissues and the middle layers of the anther wall. The second peak coincided with dehydration and maturation of pollen grains. In the anther tissues of the sterile line of petunia, tenfold higher ethylene production was observed at the meiosis stage compared with that in fertile male gametophytes. This fact correlated with the degeneration of both microsporocytes and tapetal tissues. Exogenously applied ethylene (1-100 ppm) induced a degradation of the gametophytic generation at the meiosis stage. According to the obtained data, ethylene synthesis in germinating male gametophyte is provided by a 100-fold ACC accumulation in mature pollen grains. The male gametophyte germination, both in vitro, on the culture medium, and in vivo, on the stigma surface, was accompanied by an increase in ethylene production. Depending on the type of pollination, germination of pollen on the stigma surface and the pollen tube growth in the tissues of style were accompanied by various levels ofACC and ethylene release. The male gametophyte germination after self-compatible pollination was accompanied by higher content of ACC as compared with the self-incompatible clone, whereas, after the self-incompatible pollination, we observed a higher level of ethylene production compared with compatible pollination. For both types of pollination, ACC and ethylene were predominantly produced in the stigma tissues. Inhibitor of ethylene action, 2,5-norbornadiene (NBN), blocked both the development and germination of the male gametophyte. These results suggest that ethylene is an important factor in male gametophyte development, germination, and growth at the progamic phase of fertilization.


Subject(s)
Amino Acids, Cyclic/biosynthesis , Ethylenes/biosynthesis , Germ Cells, Plant/drug effects , Petunia/drug effects , Pollen/drug effects , Pollination/drug effects , Self-Fertilization/drug effects , Amino Acids, Cyclic/pharmacology , Clone Cells , Ethylenes/pharmacology , Flowers/drug effects , Flowers/growth & development , Germ Cells, Plant/growth & development , Germination/drug effects , Meiosis/drug effects , Norbornanes/pharmacology , Petunia/growth & development , Pollen/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL