Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Curr Res Neurobiol ; 3: 100056, 2022.
Article in English | MEDLINE | ID: mdl-36518347

ABSTRACT

In meditation practices that involve focused attention to a specific object, novice practitioners often experience moments of distraction (i.e., mind wandering). Previous studies have investigated the neural correlates of mind wandering during meditation practice through Electroencephalography (EEG) using linear metrics (e.g., oscillatory power). However, their results are not fully consistent. Since the brain is known to be a chaotic/nonlinear system, it is possible that linear metrics cannot fully capture complex dynamics present in the EEG signal. In this study, we assess whether nonlinear EEG signatures can be used to characterize mind wandering during breath focus meditation in novice practitioners. For that purpose, we adopted an experience sampling paradigm in which 25 participants were iteratively interrupted during meditation practice to report whether they were focusing on the breath or thinking about something else. We compared the complexity of EEG signals during mind wandering and breath focus states using three different algorithms: Higuchi's fractal dimension (HFD), Lempel-Ziv complexity (LZC), and Sample entropy (SampEn). Our results showed that EEG complexity was generally reduced during mind wandering relative to breath focus states. We conclude that EEG complexity metrics are appropriate to disentangle mind wandering from breath focus states in novice meditation practitioners, and therefore, they could be used in future EEG neurofeedback protocols to facilitate meditation practice.

2.
Neuroimage ; 245: 118669, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34688899

ABSTRACT

Previous literature suggests that individuals with meditation training become less distracted during meditation practice. In this study, we assess whether putative differences in the subjective experience of meditation between meditators and non-meditators are reflected in EEG spectral modulations. For this purpose, we recorded electroencephalography (EEG) during rest and two breath focus meditations (with and without experience sampling) in a group of 29 adult participants with more than 3 years of meditation experience and a control group of 29 participants without any meditation experience. Experience sampling in one of the meditation conditions allowed us to disentangle periods of breath focus from mind wandering (i.e. moments of distraction driven by task-irrelevant thoughts) during meditation practice. Overall, meditators reported a greater level of focus and reduced mind wandering during meditation practice than controls. In line with these reports, EEG spectral modulations associated with meditation and mind wandering also differed significantly between meditators and controls. While meditators (but not controls) showed a significant decrease in individual alpha frequency / amplitude and a steeper 1/f slope during meditation relative to rest, controls (but not meditators) showed a relative increase in individual alpha amplitude during mind wandering relative to breath focus periods. Together, our results show that the subjective experience of meditation and mind wandering differs between meditators and novices and that this is reflected in oscillatory and non-oscillatory properties of EEG.


Subject(s)
Attention , Electroencephalography , Meditation , Adult , Aged , Brain Mapping , Ecological Momentary Assessment , Female , Humans , Male , Middle Aged
3.
Eur J Neurosci ; 53(6): 1855-1868, 2021 03.
Article in English | MEDLINE | ID: mdl-33289167

ABSTRACT

Meditation practice entails moments of distraction dominated by self-generated thoughts (i.e. mind wandering). Initial studies assessing the neural correlates of mind wandering in the context of meditation practice have identified an important role of theta (4-8 Hz) and alpha (8-14 Hz) neural oscillations. In this study, we use a probe-caught experience sampling paradigm to assess spectral changes in the theta-alpha frequency range during mind wandering in the context of breath focus meditation. Electroencephalography (EEG) was measured in 25 novice meditation practitioners during a breath focus task in which they were repeatedly probed to report whether they were focusing on their breath or thinking about something else. Mind wandering episodes were associated with an increase in the amplitude and a decrease in the frequency of theta (4-8 Hz) oscillations. Conversely, alpha oscillations (8-14 Hz) were shown to decrease in amplitude and increase in frequency during mind wandering relative to breath focus. In addition, mind wandering episodes were shown to be accompanied by increased harmonicity and phase synchrony between alpha and theta rhythms. Because similar spectral changes in the theta-alpha frequency range have been reported during controlled cognitive processes involving memory and executive control, we speculate that mind wandering and controlled processes could share some neurocognitive mechanisms. From a translational perspective, this study indicates that oscillatory activity in the theta-alpha frequency range could form adequate parameters for developing EEG-neurofeedback protocols aimed at facilitating the detection of mind wandering during meditation practice.


Subject(s)
Meditation , Attention , Ecological Momentary Assessment , Electroencephalography , Humans , Theta Rhythm
4.
Sci Rep ; 10(1): 5419, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214173

ABSTRACT

Neural activity is known to oscillate within discrete frequency bands and the synchronization between these rhythms is hypothesized to underlie information integration in the brain. Since strict synchronization is only possible for harmonic frequencies, a recent theory proposes that the interaction between different brain rhythms is facilitated by transient harmonic frequency arrangements. In this line, it has been recently shown that the transient occurrence of 2:1 harmonic cross-frequency relationships between alpha and theta rhythms (i.e. falpha ≈ 12 Hz; ftheta ≈ 6 Hz) is enhanced during effortful cognition. In this study, we tested whether achieving a state of 'mental emptiness' during meditation is accompanied by a relative decrease in the occurrence of 2:1 harmonic cross-frequency relationships between alpha and theta rhythms. Continuous EEG recordings (19 electrodes) were obtained from 43 highly experienced meditators during meditation practice, rest and an arithmetic task. We show that the occurrence of transient alpha:theta 2:1 harmonic relationships increased linearly from a meditative to an active cognitive processing state (i.e. meditation < rest < arithmetic task). It is argued that transient EEG cross-frequency arrangements that prevent alpha:theta cross-frequency coupling could facilitate the experience of 'mental emptiness' by avoiding the interaction between the memory and executive components of cognition.


Subject(s)
Alpha Rhythm/physiology , Awareness/physiology , Cognition/physiology , Meditation/psychology , Rest/physiology , Theta Rhythm/physiology , Adult , Brain , Electroencephalography/methods , Female , Humans , Male , Mathematics/methods , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL