Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nutrients ; 16(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398826

ABSTRACT

Cadmium (Cd) is a prooxidant that adversely affects human health, including the nervous system. As exposure of the general population to this heavy metal is inevitable, it is crucial to look for agents that can prevent the effects of its toxic action. An experimental model on female rats of current lifetime human exposure to cadmium (3-24-months' treatment with 1 or 5 mg Cd/kg diet) was used to test whether low-level and moderate intoxication can exert a prooxidative impact in the brain and whether supplementation with a 0.1% extract from the berries of Aronia melanocarpa L. (Michx.) Elliott (AE; chokeberry extract) can protect against this action. Numerous parameters of the non-enzymatic and enzymatic antioxidative barrier, as well as total antioxidative and oxidative status (TAS and TOS, respectively), were determined and the index of oxidative stress (OSI) was calculated. Moreover, chosen prooxidants (myeloperoxidase, xanthine oxidase, and hydrogen peroxide) and biomarkers of oxidative modifications of lipids, proteins, and deoxyribonucleic acid were assayed. Cadmium dysregulated the balance between oxidants and antioxidants in the brain and led to oxidative stress and oxidative injury of the cellular macromolecules, whereas the co-administration of AE alleviated these effects. To summarize, long-term, even low-level, cadmium exposure can pose a risk of failure of the nervous system by the induction of oxidative stress in the brain, whereas supplementation with products based on aronia berries seems to be an effective protective strategy.


Subject(s)
Cadmium , Photinia , Humans , Rats , Female , Animals , Rats, Wistar , Cadmium/toxicity , Fruit/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Brain/metabolism , Plant Extracts/pharmacology
2.
Nutrients ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36235732

ABSTRACT

In an in vivo rat model of human exposure to cadmium (Cd; 5 and 50 mg/L, 6 months), whether the supplementation with zinc (Zn; 30 and 60 mg/L, increasing its daily intake by 79% and 151%, respectively) protects against the unfavourable impact of this xenobiotic on the vascular tissue of the abdominal aorta was investigated. The treatment with Cd led to oxidative stress and increased the concentrations of pro-inflammatory interleukin 1ß (IL-1ß), total cholesterol (TC), triglycerides (TG), and endothelial nitric oxide synthase (eNOS) and decreased the concentration of anti-inflammatory interleukin 10 (IL-10) in the vascular tissue. Cd decreased the expression of intercellular adhesion molecule-1 (ICAM-1), platelet endothelial cell adhesion molecule-1 (PECAM-1), and L-selectin on the endothelial cells. The administration of Zn prevented most of the Cd-induced alterations or at least weakened them (except for the expression of adhesive molecules). In conclusion, Zn supplementation may protect from the toxic impact of Cd on the blood vessels and thus exert a beneficial influence on the cardiovascular system. The increase in the intake of Zn by 79% may be sufficient to provide this protection and the effect is related to the antioxidative, anti-inflammatory, and antiatherogenic properties of this essential element.


Subject(s)
Aorta, Abdominal , Cadmium , Zinc , Animals , Aorta, Abdominal/drug effects , Cadmium/toxicity , Cholesterol/metabolism , Dietary Supplements , Endothelial Cells/metabolism , Intercellular Adhesion Molecule-1/metabolism , Interleukin-10/metabolism , Interleukin-1beta/metabolism , L-Selectin/metabolism , Models, Theoretical , Nitric Oxide Synthase Type III/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Rats , Rats, Wistar , Triglycerides/metabolism , Xenobiotics/toxicity , Zinc/pharmacology
3.
Oxid Med Cell Longev ; 2021: 6622245, 2021.
Article in English | MEDLINE | ID: mdl-35003519

ABSTRACT

Cadmium (Cd) is one of the most harmful xenobiotics to which humans are exposed, mainly by the oral route, throughout life. Preventive strategies are searched as low intoxication with this element, among others due to its prooxidative properties, can be deleterious to health and the exposure to it is continuously increasing. Recently, interest has been paid to plant raw materials with a high antioxidative potential to oppose the prooxidative properties of cadmium, such as black chokeberry (Aronia melanocarpa L. fruit), which is rich in polyphenolic compounds. The study was aimed at assessing whether the chokeberry extract may counteract the prooxidative impact of low-level and moderate repeated intoxication with cadmium on the sublingual salivary gland. The investigation was performed on 96 Wistar rats (females), which were treated with a 0.1% aqueous extract from chokeberries or/and a diet containing 1 or 5 mg Cd/kg for 3 and 10 months, and control animals. The intoxication with cadmium, in a dose- and time-dependent manner, attenuated the enzymatic and nonenzymatic antioxidative potential and increased the concentration of hydrogen peroxide and total oxidative status of the sublingual salivary gland resulting in an occurrence of oxidative stress, enhancement of lipid peroxidation, and oxidative injuries of proteins in this salivary gland. The treatment with the black chokeberry extract during the intoxication with cadmium prevented this xenobiotic-caused oxidative/reductive imbalance and oxidative modifications of proteins and lipids in the salivary gland. The above results allow the conclusion that the consumption of black chokeberry products during intoxication with cadmium can prevent oxidative stress and its consequences in the sublingual salivary gland and thus counteract the unfavourable impact of this xenobiotic on the oral cavity.


Subject(s)
Cadmium/toxicity , Photinia/chemistry , Plant Extracts/chemistry , Sublingual Gland/drug effects , Animals , Oxidative Stress , Rats , Rats, Wistar
4.
Nutrients ; 12(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927885

ABSTRACT

This study examined whether a polyphenol-rich extract from the berries of Aronia melanocarpa L. (AE; chokeberries) may protect from the impact of cadmium (Cd) on the metabolism of collagen in the liver. The study was conducted in an experimental model (rats that were fed a diet containing 1 or 5 mg Cd/kg for 3-24 months) of human exposure to this xenobiotic during a lifetime. The concentration of total collagen and the expression of collagen types I and III at the mRNA and protein levels, as well as the concentrations of matrix metalloproteinases (MMP-1 and MMP-2) and their tissue inhibitors (TIMP-1 and TIMP-2), were assayed. The administration of Cd and/or AE had only a slight and temporary impact on the concentration of total collagen in the liver. The supplementation with AE significantly prevented Cd-mediated changes in the expression of collagen types I and III at the mRNA and protein levels and their ratio (collagen III/collagen I), as well as a rise in the concentrations of MMPs and TIMPs in this organ. The results allow the conclusion that the intake of chokeberry products in the case of Cd intoxication may be effective in prevention from this xenobiotic-induced disturbance in collagen homeostasis in the liver.


Subject(s)
Cadmium Poisoning/prevention & control , Collagen/drug effects , Photinia/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Protective Agents/pharmacology , Xenobiotics/adverse effects , Animals , Cadmium/administration & dosage , Dietary Supplements , Disease Models, Animal , Environmental Exposure/adverse effects , Humans , Liver/metabolism , Rats
5.
Nutrients ; 11(4)2019 Mar 31.
Article in English | MEDLINE | ID: mdl-30935147

ABSTRACT

It was investigated, using a female rat model of low and moderate exposure of human to cadmium (Cd, 1 and 5 mg Cd/kg diet for 3⁻24 months), whether a polyphenol-rich 0.1% aqueous extract from Aronia melanocarpa L. berries (AE) may prevent Cd-induced lipid peroxidation and oxidative modifications of proteins and deoxyribonucleic acid (DNA) in the liver. For this purpose, markers of lipid peroxidation (lipid peroxides and 8-isoprostane) and oxidative injury of proteins (protein carbonyl groups and 3-nitrotyrosine) and DNA (8-hydroxy-2'-deoxyguanosine) were measured in this organ. The expression of metallothionein 1 (MT1) and metallothionein 2 (MT2) genes was estimated for a better explanation of the possible mechanisms of protective action of AE against Cd hepatotoxicity. The low and moderate treatment with Cd induced lipid peroxidation and oxidatively modified proteins and DNA, as well as enhanced the expression of MT1 and MT2 in the liver, whereas the co-administration of AE completely prevented almost all of these effects. The results allow us to conclude that the consumption of aronia products under exposure to Cd may offer protection against oxidative injury of the main cellular macromolecules in the liver, including especially lipid peroxidation, and in this way prevent damage to this organ.


Subject(s)
Cadmium/toxicity , Fruit/chemistry , Lipid Peroxidation/drug effects , Photinia/chemistry , Plant Extracts/pharmacology , Animals , Biomarkers , Chemical and Drug Induced Liver Injury , DNA Damage , Environmental Pollutants/chemistry , Environmental Pollutants/pharmacology , Female , Oxidation-Reduction , Plant Extracts/chemistry , Random Allocation , Rats , Rats, Sprague-Dawley , Xenobiotics
6.
Nutrients ; 11(1)2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30577648

ABSTRACT

The study investigated, in a rat model of low-level and moderate environmental exposure to cadmium (Cd; 1 or 5 mg Cd/kg diet, respectively, for 3 to 24 months), whether the co-administration of 0.1% extract from Aronia melanocarpa L. berries (AE) may protect against oxidative stress in the liver and in this way mediate this organ status. The intoxication with Cd, dose- and duration-dependently, weakened the enzymatic antioxidative barrier, decreased the concentrations of reduced glutathione and total thiol groups, and increased the concentrations of oxidized glutathione, hydrogen peroxide, xanthine oxidase, and myeloperoxidase in this organ. These resulted in a decrease in the total antioxidative status, increase in the total oxidative status and development of oxidative stress (increased oxidative stress index and malondialdehyde concentration) and histopathological changes in the liver. The administration of AE at both levels of Cd treatment significantly improved the enzymatic and nonenzymatic antioxidative barrier, decreased pro-oxidant concentration, and protected from the development of oxidative stress in the liver and changes in its morphology, as well as normalized the serum activities of liver enzymes markers. In conclusion, consumption of aronia products may prevent Cd-induced destroying the oxidative/antioxidative balance and development of oxidative stress in the liver protecting against this organ damage.


Subject(s)
Cadmium/toxicity , Fruit/chemistry , Liver/metabolism , Oxidative Stress/drug effects , Photinia , Plant Extracts/pharmacology , Alanine Transaminase/blood , Animals , Antioxidants/analysis , Antioxidants/metabolism , Aspartate Aminotransferases/blood , Cadmium/administration & dosage , Environmental Exposure , Female , Glutathione/analogs & derivatives , Glutathione/analysis , Humans , Hydrogen Peroxide/analysis , Liver/chemistry , Liver/drug effects , Models, Animal , Oxidation-Reduction , Rats , Rats, Wistar
7.
J Appl Toxicol ; 38(7): 996-1007, 2018 07.
Article in English | MEDLINE | ID: mdl-29508442

ABSTRACT

Cadmium (Cd) is a toxic metal that damages bone tissue by affecting its mineral and organic components. The organic matrix is mainly (90%) composed of collagen, which determines the biomechanical strength of bone. The aim of this study was to evaluate the effect of zinc (Zn) supplementation (30 or 60 mg l-1 ) under moderate and relatively high exposure to Cd (5 and 50 mg l-1 ) on collagen in the rat tibia proximal epiphysis and diaphysis (regions abundant in trabecular and cortical bone, respectively). Significant decrease in collagen type I biosynthesis was found in both regions of the tibia in Cd-treated rats, whereas the supplementation with Zn provided significant protection against this effect. Western blot confirmed the presence of the major type I collagen in the tibia epiphysis and diaphysis, but collagen type II was revealed only in the epiphysis. Acetic acid- and pepsin-soluble collagen concentration in the tibia epiphysis and diaphysis was significantly increased due to the exposure to Cd, whereas the supplementation with Zn protected, partially or totally, from these effects, depending on the used concentration. The supplementation with Zn also provided protection from unfavorable Cd impact on the maturation of the bone collagen, as the ratio of cross-links to monomers was higher compared to the Cd-treated group. This report confirms our previous findings on the preventive action of Zn against harmful effects of Cd on bone, but additionally, and to the best of our knowledge for the first time, explains the possible mechanism of the beneficial influence of this bioelement.


Subject(s)
Cadmium Chloride/toxicity , Cancellous Bone/drug effects , Chlorides/pharmacology , Collagen Type I/biosynthesis , Cortical Bone/drug effects , Dietary Supplements , Procollagen/biosynthesis , Tibia/drug effects , Zinc Compounds/pharmacology , Animals , Cancellous Bone/metabolism , Cancellous Bone/pathology , Cortical Bone/metabolism , Cortical Bone/pathology , Cytoprotection , Male , Rats, Wistar , Solubility , Tibia/metabolism , Tibia/pathology
8.
Nutrients ; 9(12)2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29257101

ABSTRACT

In an experimental model of low-level and moderate environmental human exposure to cadmium (Cd), it was investigated whether the consumption of a polyphenol-rich Aronia melanocarpa L. berries (chokeberries) extract (AE) may influence the body status of zinc (Zn) and copper (Cu). The bioelements' apparent absorption, body retention, serum and tissue concentrations, total pool in internal organs, excretion, and the degree of binding to metallothionein were evaluated in female rats administered 0.1% aqueous AE or/and Cd in their diet (1 and 5 mg/kg) for 3-24 months. The consumption of AE alone had no influence on the body status of Zn and Cu. The extract administration at both levels of Cd treatment significantly (completely or partially) protected against most of the changes in the metabolism of Zn and Cu caused by this xenobiotic; however, it increased or decreased some of the Cd-unchanged indices of their body status. Based on the findings, it seems that rational amounts of chokeberry products may be included in the daily diet without the risk of destroying Zn and Cu metabolisms; however, their potential prophylactic use under exposure to Cd needs further study to exclude any unfavourable impact of these essential elements on the metabolism.


Subject(s)
Cadmium/toxicity , Copper/urine , Photinia/chemistry , Plant Extracts/urine , Polyphenols/urine , Zinc/urine , Animals , Biological Availability , Copper/pharmacokinetics , Duodenum/drug effects , Duodenum/metabolism , Feces/chemistry , Female , Fruit/chemistry , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacokinetics , Polyphenols/pharmacokinetics , Rats , Rats, Wistar , Tissue Distribution , Zinc/pharmacokinetics
9.
Nutrients ; 9(6)2017 May 25.
Article in English | MEDLINE | ID: mdl-28587093

ABSTRACT

The hypothesis that the consumption of Aronia melanocarpa berries (chokeberries) extract, recently reported by us to improve bone metabolism in female rats at low-level and moderate chronic exposure to cadmium (1 and 5 mg Cd/kg diet for up to 24 months), may increase the bone resistance to fracture was investigated. Biomechanical properties of the neck (bending test with vertical head loading) and diaphysis (three-point bending test) of the femur of rats administered 0.1% aqueous chokeberry extract (65.74% of polyphenols) or/and Cd in the diet (1 and 5 mg Cd/kg) for 3, 10, 17, and 24 months were evaluated. Moreover, procollagen I was assayed in the bone tissue. The low-level and moderate exposure to Cd decreased the procollagen I concentration in the bone tissue and weakened the biomechanical properties of the femoral neck and diaphysis. Chokeberry extract administration under the exposure to Cd improved the bone collagen biosynthesis and femur biomechanical properties. The results allow for the conclusion that the consumption of chokeberry products under exposure to Cd may improve the bone biomechanical properties and protect from fracture. This study provides support for Aronia melanocarpa berries being a promising natural agent for skeletal protection under low-level and moderate chronic exposure to Cd.


Subject(s)
Bone Density/drug effects , Cadmium/toxicity , Femur/drug effects , Photinia , Plant Extracts/pharmacology , Animals , Biomechanical Phenomena , Female , Femur/pathology , Fruit/physiology , Humans , Plant Extracts/chemistry , Rats , Rats, Wistar
10.
Planta Med ; 82(7): 621-31, 2016 May.
Article in English | MEDLINE | ID: mdl-27096624

ABSTRACT

Recently, we demonstrated in a rat model that consumption of a polyphenol-rich extract obtained from the berries of Aronia melanocarpa could protect from cadmium-induced disorders in bone turnover and changes in bone mineral status. The aim of this study was to investigate whether the osteoprotective effect of this extract is mediated by the oxidative defense system. Enzymatic and nonenzymatic antioxidants, total antioxidative and oxidative status, hydrogen peroxide, and markers of oxidative protein, lipid, and DNA damage were determined in bone tissue at the distal femoral epiphysis of female Wistar rats receiving 0.1 % aqueous A. melanocarpa extract (prepared from the lyophilized commercial extract containing 65.74 % of polyphenols) as the only drinking fluid and/or cadmium in the diet (1 and 5 mg/kg) for 3, 10, 17, and 24 months. The total oxidative and antioxidative status of the serum was also evaluated. The administration of A. melanocarpa extract provided significant protection from cadmium-induced oxidative stress in the bone and serum, and from lipid peroxidation and oxidative damage to the protein and DNA in the bone tissue. Numerous correlations were noted between indices of the oxidative/antioxidative bone status and markers of bone metabolism previously assayed in the animals receiving A. melanocarpa extract. The results allow the conclusion that the ability of A. melanocarpa extract to mediate the oxidative defense system and prevent oxidative modifications of protein, lipid, and DNA in the bone tissue plays an important role in its osteoprotective action under exposure to cadmium. The findings provide further evidence supporting our suggestion that chokeberry may be a promising natural agent for protection against the toxic action of cadmium in women chronically exposed to this metal.


Subject(s)
Antioxidants/pharmacology , Bone and Bones/drug effects , Cadmium/toxicity , Photinia/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Animals , Antioxidants/isolation & purification , DNA Damage/drug effects , Female , Femur , Oxidative Stress/drug effects , Polyphenols/isolation & purification , Rats , Rats, Wistar , Tibia
11.
Toxicol Appl Pharmacol ; 272(1): 208-20, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23726800

ABSTRACT

It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60mg/l) or/and Cd (5 and 50mg/l) for 6months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system.


Subject(s)
Bone and Bones/metabolism , Cadmium Chloride/toxicity , Chlorides/pharmacology , Dietary Supplements , NF-kappa B/metabolism , Osteoprotegerin/metabolism , Oxidative Stress/drug effects , RANK Ligand/metabolism , Zinc Compounds/pharmacology , Analysis of Variance , Animals , Antioxidants/metabolism , Bone and Bones/drug effects , DNA Damage , Enzyme-Linked Immunosorbent Assay , Lipid Metabolism/drug effects , Male , Rats , Rats, Wistar
12.
J Trace Elem Med Biol ; 26(1): 46-52, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22100499

ABSTRACT

It was investigated whether the ability of zinc (Zn) to prevent cadmium (Cd)-induced lipid peroxidation may be connected with its impact on glutathione peroxidase (GPx) activity and selenium (Se) concentration. GPx and Se were determined in the serum, liver and kidney of the rats that received Cd (5 or 50 mg/L) or/and Zn (30 mg/L) in drinking water for 6 months in whose the protective Zn impact was noted (Rogalska J, Brzóska MM, Roszczenko A, Moniuszko-Jakoniuk J. Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 2009;177:142-52). Moreover, dependences between these parameters, and indices of lipid peroxidation (F(2)-isoprostane, lipid peroxides, oxidized low density lipoprotein cholesterol) as well as concentrations of Cd and Zn were estimated. The supplementation with Zn during the exposure to 5 mg Cd/L entirely antagonized the Cd-induced increase in GPx activity and Se concentration in the liver and kidney, but not in the serum. Zn administration during the treatment with 50 mg Cd/L totally or partially prevented from the Cd-caused decrease in GPx activity and Se concentration in the serum, liver and kidney. At the higher level of Cd exposure, GPx activity in the serum and tissues positively correlated with Se concentration. Moreover, numerous correlations were noted between GPx and/or Se and the indices of lipid peroxidation. The results indicate that the protective impact of Zn against the Cd-induced lipid peroxidation during the relatively high exposure might be connected with its beneficial influence on Se concentration and GPx activity in the serum and tissues, whereas this bioelement influence at the moderate exposure seems to be independent of GPx and Se.


Subject(s)
Cadmium/toxicity , Glutathione Peroxidase/metabolism , Kidney/metabolism , Liver/metabolism , Selenium/metabolism , Zinc/administration & dosage , Animals , Dietary Supplements , Kidney/drug effects , Lipid Peroxidation , Liver/drug effects , Male , Oxidative Stress , Rats , Rats, Wistar , Selenium/blood , Zinc/metabolism
13.
Chem Biol Interact ; 193(3): 191-203, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21627960

ABSTRACT

It was estimated, in a rat model of moderate and relatively high chronic human exposure to cadmium (Cd), whether enhanced zinc (Zn) consumption may prevent Cd-induced liver injury and if the possible protective effect of this bioelement depends on its intake. For this purpose, the structure and function of the liver of the rats that received Zn (30 and 60mg/l) or/and Cd (5 and 50mg/l) for 6months were evaluated. The treatment with Cd led to, dependent on the exposure level, pathological changes in the liver, including enhanced apoptosis and induction of inflammatory and necrotic processes. Moreover, the serum activities of hepatic marker enzymes (alanine transaminase and aspartate transaminase) and the concentration of proinflammatory cytokine - tumor necrosis factor α were increased. The supplementation with 30 and 60mg Zn/l (enhancing daily Zn intake by 79% and 151%, respectively) partially or totally prevented from some of the Cd-induced changes in the liver structure and function; however, it provided no protection from necrosis, and the administration of 60mg Zn/l during the higher Cd exposure even intensified this process. At both levels of Cd treatment, the use of 30mg Zn/l was more effective in preventing liver injury than that of 60mg Zn/l. The hepatoprotective impact of Zn may be explained, at least partly, by its antioxidative, antiapoptotic and anti-inflammatory action, ability to stimulate regenerative processes in the liver tissue, and indirect action resulting in a decrease in the liver pool of the non-metallothionein-bound Cd(2+) ions able to exert toxic action. The results provide strong evidence that enhanced Zn consumption may be beneficial in protection from Cd hepatotoxicity; however, its excessive intake at relatively high exposure to Cd may intensify liver injury.


Subject(s)
Cadmium/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , Zinc/therapeutic use , Alanine Transaminase/blood , Animals , Apoptosis/drug effects , Aspartate Aminotransferases/blood , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Liver/metabolism , Liver/pathology , Male , Models, Animal , Necrosis/pathology , Protective Agents/therapeutic use , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/blood
14.
Chem Biol Interact ; 177(2): 142-52, 2009 Jan 27.
Article in English | MEDLINE | ID: mdl-18848534

ABSTRACT

It has been investigated, based on a rat model of human exposure to cadmium (Cd), whether zinc (Zn) supplementation may prevent Cd-induced alterations in lipid metabolism. For this purpose, the concentrations of free fatty acids (FFA), phospholipids (PL), triglycerides (TG), total cholesterol (TCh), and high and low density lipoprotein cholesterol (HDL and LDL, respectively) as well as the concentrations of chosen indices of lipid peroxidation such as lipid peroxides (LPO), F2-isoprostane (F2-IsoP) and oxidized LDL (oxLDL) were estimated in the serum of male Wistar rats administered Cd (5 or 50mg/l) or/and Zn (30 or 60mg/l) in drinking water for 6 months. The exposure to 5 and 50mg Cd/l resulted in marked alterations in the lipid status reflected in increased concentrations of FFA, TCh, LDL, LPO, F2-IsoP and oxLDL, and decreased concentrations of PL and HDL in the serum. The concentrations of LDL, LPO, F2-IsoP and oxLDL were more markedly enhanced at the higher Cd dosage. The supplementation with Zn during the exposure to 5 and 50mg Cd/l entirely prevented all the Cd-induced changes in the serum concentrations of the estimated lipid compounds and indices of lipid peroxidation, except for the F2-IsoP for which Zn provided only partial protection. Based on the results it can be concluded that Zn supplementation during exposure to Cd may have a protective effect on lipid metabolism consisting in its ability to prevent hyperlipidemia, including especially hypercholesterolemia, and to protect from lipid peroxidation. The findings seem to suggest that enhanced dietary Zn intake during Cd exposure, via preventing alterations in the body status of lipids may, at least partly, protect against some effects of Cd toxicity, including oxidative damage to the cellular membranes and atherogenic action. The paper is the first report suggesting protective impact of Zn against proatherogenic Cd action on experimental model of chronic moderate and relatively high human exposure to this toxic metal.


Subject(s)
Cadmium Chloride/toxicity , Chlorides/administration & dosage , Hazardous Substances/toxicity , Lipid Metabolism/drug effects , Lipid Peroxidation/drug effects , Zinc Compounds/administration & dosage , Animals , Chemoprevention , Cholesterol/blood , Dietary Supplements , Disease Models, Animal , Dose-Response Relationship, Drug , Drinking , Drug Therapy, Combination , Fatty Acids, Nonesterified/blood , Hyperlipidemias/chemically induced , Hyperlipidemias/metabolism , Hyperlipidemias/prevention & control , Kidney/chemistry , Kidney/drug effects , Kidney/metabolism , Lipid Peroxidation/physiology , Male , Phospholipids/blood , Rats , Rats, Wistar , Triglycerides/blood
15.
Chem Biol Interact ; 171(3): 312-24, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18164699

ABSTRACT

The present study was aimed at estimate, based on the rat model of human moderate and relatively high chronic exposure to cadmium (Cd), whether zinc (Zn) supplementation may prevent Cd-induced weakening in the bone biomechanical properties. For this purpose, male Wistar rats were administered Cd (5 or 50 mg/l) or/and Zn (30 or 60 mg/l) in drinking water for 6 and 12 months. Bone mineral density (BMD) and biomechanical properties (yield load, ultimate load, post-yield load, displacement at yield and at ultimate, stiffness, work to fracture, yield stress, ultimate stress and Young modulus of elasticity) of the femoral distal end and femoral diaphysis were examined. Biomechanical properties of the distal femur were estimated in a compression test, whereas those of the femoral diaphysis -- in a three-point bending test. Exposure to Cd, in a dose and duration dependent manner, decreased the BMD and weakened the biomechanical properties of the femur at its distal end and diaphysis. Zn supplementation during Cd exposure partly, but importantly, prevented the weakening in the bone biomechanical properties. The favorable Zn influence seemed to result from an independent action of this bioelement and its interaction with Cd. However, Zn supply at the exposure to Cd had no statistically significant influence on the BMD at the distal end and diaphysis of the femur. The results of the present paper suggest that Zn supplementation during exposure to Cd may have a protective influence on the bone tissue biomechanical properties, and in this way it can, at least partly, decrease the risk of bone fractures. The findings seem to indicate that enhanced dietary Zn intake may be beneficial for the skeleton in subjects chronically exposed to Cd.


Subject(s)
Cadmium/toxicity , Diaphyses/drug effects , Dietary Supplements , Femur/drug effects , Zinc/administration & dosage , Absorptiometry, Photon , Administration, Oral , Animals , Biomechanical Phenomena , Bone Density/drug effects , Cadmium/antagonists & inhibitors , Diaphyses/diagnostic imaging , Diaphyses/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Femur/diagnostic imaging , Femur/metabolism , Male , Rats , Rats, Wistar
16.
Toxicology ; 237(1-3): 89-103, 2007 Jul 31.
Article in English | MEDLINE | ID: mdl-17560002

ABSTRACT

The aim of the present study is to investigate, based on the rat model of moderate and relatively high human exposure to cadmium (Cd), whether zinc (Zn) supplementation may prevent Cd-induced disorders in bone metabolism. For this purpose, male Wistar rats received Cd (5 and 50mg/l) or/and Zn (30 and 60mg/l) in drinking water for 6 and 12 months. Bone densitometry and biochemical markers of bone turnover were used to assess the effects of Cd or/and Zn. Bone mineral content (BMC) and density (BMD) were measured in the femur. Serum osteocalcin (OC) and alkaline phosphatase in trabecular (bT-ALP) and cortical (bC-ALP) bone were determined as bone formation markers, and carboxy-terminal cross-linking telopeptides of type I collagen (CTX) in serum were measured as bone resorption marker. Serum concentration of calcium (Ca) and its renal handling, as well as Zn and Cd concentrations in the serum/blood, urine and femur were evaluated as well. The exposure to 5 and 50mg Cd/l (0.340+/-0.026 and 2.498+/-0.093mg Cd/kg body wt/24h, respectively), in a dose and duration dependent manner, affected bone turnover (inhibited bone formation and stimulated its resorption) and disturbed bone mineralization (decreased BMC, BMD and Zn concentration). Zn supply at the concentration of 30 and 60mg/l (1.904+/-0.123 and 3.699+/-0.213mg/kg body wt/24h, respectively) during Cd exposure influenced the Cd-induced disorders in bone metabolism. Zn administration to the Cd-exposed rats enhanced the bone ALP activity and prevented Cd-induced bone resorption, but had no statistically significant effect on BMC and BMD; however, mean values of the densitometric parameters in the rats receiving both Cd and Zn were higher than in those treated with Cd alone. Moreover, Zn supplementation at both levels of Cd exposure was found to prevent Cd accumulation in the femur and the Cd-induced decrease in bone Zn concentration. The results of the present study allow the conclusion that Zn supplementation during Cd exposure may partly protect from disorders in bone metabolism. The influence of Zn may be accompanied by its ability to prevent Cd-induced Zn deficiency and to decrease Cd accumulation in bone tissue. The findings seem to indicate that enhanced dietary intake of Zn in subjects chronically exposed to moderate and relatively high Cd levels may have a protective influence on the skeleton.


Subject(s)
Bone Resorption , Bone and Bones/metabolism , Cadmium Chloride/toxicity , Chlorides , Zinc Compounds , Absorptiometry, Photon , Animals , Body Weight/drug effects , Bone Density/drug effects , Bone Resorption/chemically induced , Bone Resorption/metabolism , Bone Resorption/prevention & control , Bone and Bones/drug effects , Cadmium Chloride/pharmacokinetics , Calcium/blood , Chlorides/administration & dosage , Chlorides/pharmacokinetics , Chlorides/pharmacology , Chlorides/therapeutic use , Collagen Type I/blood , Drug Interactions , Femur/drug effects , Femur/metabolism , Male , Osteocalcin/blood , Peptides/blood , Rats , Rats, Wistar , Zinc Compounds/administration & dosage , Zinc Compounds/pharmacokinetics , Zinc Compounds/pharmacology , Zinc Compounds/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL