Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Type of study
Language
Publication year range
1.
Int J Cosmet Sci ; 45(2): 155-165, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36411959

ABSTRACT

OBJECTIVE: Hair loss is caused by various factors. Impacts of these factors are often overlapped and intensified. Currently, mitigation of hair loss is being studied by proliferating dermal papilla cells (DPCs) and inhibiting deleterious factors such as dihydrotestosterone (DHT) and oxidative stress on hair growth. Camellia japonica (C. japonica) fruit shell is a discarded part. Its biological activity remains to be elucidated. In this study, we investigated the capacity of C. japonica fruit shell extract (CJFSE) for hair loss mitigation. METHODS: MTT assay, spheroid culture and quantitative RT-PCR were performed to observe the proliferative effect of CJFSE on hair follicle dermal papilla cells (HFDPCs). Effects of CJFSE on DHT-induced hair loss were confirmed by Dkk-1 ELISA, ß-galactosidase (ß-gal) and 5α-reductase activity assay. In addition, effects of CJFSE on oxidative stress were confirmed through DPPH and ROS production assays. RESULTS: CJFSE increased the proliferation and spheroid size of HFDPCs. Expression levels of VEGF-A, Wnt-1, c-Myc and Cyclin D1 were upregulated by CJFSE. CJFSE also suppressed 5α-reductase activity and DHT-induced decrease in cell proliferation, Dkk-1 secretion and ß-gal activity. Moreover, CJFSE showed DPPH scavenging activity and ameliorated hydrogen peroxide-induced ROS production and ß-gal activity. Finally, gallic acid and protocatechuic acid were observed in CJFSE through HPLC analysis. CONCLUSION: CJFSE has the potential to alleviate hair loss by promoting hair cell growth and suppressing effects of DHT and oxidative stress on hair.


OBJECTIF: Divers facteurs sont responsables de la perte de cheveux. Souvent, les conséquences de ces facteurs se superposent et s'intensifient. Actuellement, on étudie comment atténuer la perte de cheveux en faisant proliférer les cellules de la papille dermique (DPC) et en inhibant les facteurs délétères tels que la dihydrotestostérone (DHT) et le stress oxydatif sur la croissance des cheveux. La coque du fruit du Camélia du Japon (Camelia japonica) est habituellement rejetée. Son utilité biologique reste à élucider. Dans cette étude, nous avons étudié la capacité de l'extrait de la coque du fruit du Camélia du Japon (CJFSE) dans la mitigation de la perte de cheveux. MÉTHODES: Un test MTT, une culture de sphéroïdes et une RT-PCR Quantitative ont été effectués pour observer la prolifération de CJFSE sur les cellules de la papille dermique du follicule pileux (HFDPC). Les effets du CJFSE sur la perte de cheveux induite par la DHT ont été confirmés par Dkk-1 ELISA, ß-galactosidase (ß-gal) et 5α-réductase. De plus, les effets du CJFSE sur le stress oxydatif ont été confirmés par des tests de production de DPPH et de ROS. RÉSULTATS: Le CJFSE a augmenté la prolifération et la taille sphéroïde des HFDPC. Les niveaux d'expression de VEGF-A, Wnt-1, c-Myc et cycline D1 ont été régulés de manière efficace par le CJFSE. Le CJFSE a également supprimé l'activité de la 5α-réductase et a induit la réduction de la DHT et de la prolifération cellulaire, ainsi que de la sécrétion de Dkk-1 et de l'activité ß-gal. Le CJFSE a en outre montré une activité de capture du DPPH et amélioré la production de ROS induite par le peroxyde d'hydrogène et l'activité ß-gal. Pour finir, les acides gallique et protocatéchuique ont été observés dans le CJFSE après analyse des HPLC. CONCLUSION: Le CJFSE a le potentiel d'atténuer la perte de cheveux en favorisant la croissance des cellules ciliées et en supprimant les effets de la DHT et du stress oxydatif sur les cheveux.


Subject(s)
Alopecia , Fruit , Reactive Oxygen Species , Dihydrotestosterone/adverse effects , Plant Extracts/pharmacology , Oxidoreductases
2.
Molecules ; 26(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419109

ABSTRACT

Bidens pilosa L. (Asteraceae) has been used historically in traditional Asian medicine and is known to have a variety of biological effects. However, the specific active compounds responsible for the individual pharmacological effects of Bidens pilosa L. (B. pilosa) extract have not yet been made clear. This study aimed to investigate the anti-inflammatory phytochemicals obtained from B. pilosa. We isolated a flavonoids-type phytochemical, isookanin, from B. pilosa through bioassay-guided fractionation based on its capacity to inhibit inflammation. Some of isookanin's biological properties have been reported; however, the anti-inflammatory mechanism of isookanin has not yet been studied. In the present study, we evaluated the anti-inflammatory activities of isookanin using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We have shown that isookanin reduces the production of proinflammatory mediators (nitric oxide, prostaglandin E2) by inhibiting the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated macrophages. Isookanin also inhibited the expression of activator protein 1 (AP-1) and downregulated the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun NH2-terminal kinase (JNK) in the MAPK signaling pathway. Additionally, isookanin inhibited proinflammatory cytokines (tumor necrosis factor-a (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1ß (IL-1ß)) in LPS-induced THP-1 cells. These results demonstrate that isookanin could be a potential therapeutic candidate for inflammatory disease.


Subject(s)
Anti-Inflammatory Agents , Bidens/chemistry , Biological Assay , Chalcones , Macrophages/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Chalcones/chemistry , Chalcones/isolation & purification , Chalcones/pharmacology , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Macrophages/pathology , Mice , Monokines/metabolism , RAW 264.7 Cells , THP-1 Cells
3.
Molecules ; 25(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256158

ABSTRACT

Rosacea is a common and chronic inflammatory skin disease that is characterized by dysfunction of the immune and vascular system. The excessive production and activation of kallikerin 5 (KLK5) and cathelicidin have been implicated in the pathogenesis of rosacea. Coptis chinensis Franch (CC) has been used as a medicinal herb in traditional oriental medicine. However, little is known about the efficacy and mechanism of action of CC in rosacea. In this study, we evaluate the effect of CC and its molecular mechanism on rosacea in human epidermal keratinocytes. CC has the capacity to downregulate the expression of KLK5 and cathelicidin, and also inhibits KLK5 protease activity, which leads to reduced processing of inactive cathelicidin into active LL-37. It was determined that CC ameliorates the expression of pro-inflammatory cytokines through the inhibition of LL-37 processing. In addition, it was confirmed that chitin, an exoskeleton of Demodex mites, mediates an immune response through TLR2 activation, and CC inhibits TLR2 expression and downstream signal transduction. Furthermore, CC was shown to inhibit the proliferation of human microvascular endothelial cells induced by LL-37, the cause of erythematous rosacea. These results demonstrate that CC improved rosacea by regulating the immune response and angiogenesis, and revealed its mechanism of action, indicating that CC may be a useful therapeutic agent for rosacea.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Coptis/chemistry , Epidermal Cells/drug effects , Epidermal Cells/metabolism , Kallikreins/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Plant Extracts/pharmacology , Cell Line , Cytokines/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Inflammation Mediators/metabolism , Models, Biological , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Proteolysis , Rosacea/drug therapy , Cathelicidins
4.
Article in English | MEDLINE | ID: mdl-30402116

ABSTRACT

Glucocorticoids are a risk factor for age-induced skin structure and function defects, and the glucocorticoid-activating enzyme, 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1), represents a promising therapeutic target. Prunella vulgaris L. (PV) is a perennial and an edible herbaceous plant normally cultivated in Asia and Europe. A recent study demonstrated a broad range of biological activities of PV including immune modulatory, antiviral, antiallergic, anti-inflammatory, antioxidant, and antidiabetic. However, little is known about the inhibitory effect of PV on 11ß-HSD1. In this study, we investigated the inhibitory effect of Prunella vulgaris L. extract (PVE) and the underlying mechanism of 11ß-HSD11 inhibition. Consistent with these results, cortisol levels were also reduced by PVE in vitro. The cortisone-induced translocation of glucocorticoids receptor (GR) was also attenuated. In addition, PVE inhibited a cortisone-mediated decrease in collagen content in skin. Collectively, these results suggest the beneficial effects of PVE in maintaining skin integrity.

5.
BMC Complement Altern Med ; 16(1): 298, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27543097

ABSTRACT

BACKGROUND: Zea mays L. (Z. mays) has been used for human consumption in the various forms of meal, cooking oil, thickener in sauces and puddings, sweetener in processed food and beverage products, bio-disel. However, especially, in case of husk extract of Z. mays, little is known about its anti-inflammatory effects. Therefore, in this study, the anti-inflammatory effects of Z. mays husk extract (ZMHE) and its mechanisms of action were investigated. METHODS: The husks of Z. Mays were harvested in kangwondo, Korea. To assess the anti-inflammatory activities of ZMHE, we examined effects of ZMHE on nitric oxide (NO) production, and release of soluble intercellular adhesion molecule-1 (sICAM-1) and eotaxin-1. The expression level of inducible nitric oxide synthase (iNOS) gene was also determined by Western blot and luciferase reporter assays. To determine its mechanisms of action, a luciferase reporter assay for nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1) was introduced. RESULTS: ZMHE inhibited lipopolysaccharide (LPS)-induced production of NO in RAW264.7 cells. In addition, expression of iNOS gene was reduced, as confirmed by Western blot and luciferase reporter assays. Effects of ZMHE on the AP-1 and NF-kB promoters were examined to elucidate the mechanism of its anti-inflammatory activity. Activation of AP-1 and NF-kB promoters induced by LPS was significantly reduced by ZMHE treatment. In addition, LPS-induced production of sICAM-1 and IL-4-induced production of eotaxin-1 were all reduced by ZMHE. CONCLUSIONS: Our results indicate that ZMHE has anti-inflammatory effects by downregulating the expression of iNOS gene and its downregulation is mediated by inhibiting NF-kB and AP-1 signaling.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/metabolism , Plant Extracts/pharmacology , Zea mays/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Intercellular Adhesion Molecule-1/metabolism , Mice , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Plant Extracts/chemistry , RAW 264.7 Cells , Transcription Factor AP-1/metabolism
6.
Nutrients ; 7(11): 9337-52, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26569300

ABSTRACT

The accumulation of free radicals and advanced glycation end products (AGEs) in the skin plays a very important role in skin aging. Both are known to interact with each other. Therefore, natural compounds or extracts that possess both antioxidant and antiglycation activities might have great antiageing potential. Akebia quinata fruit extract (AQFE) has been used to treat urinary tract inflammatory disease in traditional Korean and Chinese medicines. In the present study, AQFE was demonstrated to possess antioxidant and antiglycation activity. AQFE protects human dermal fibroblasts (HDFs) from oxidative stress and inhibits cellular senescence induced by oxidative stress. We also found that AQFE inhibits glycation reaction between BSA and glucose. The antiglycation activity of AQFE was dose-dependent. In addition, the antiglycation activity of AQFE was confirmed in a human skin explant model. AQFE reduced CML expression and stimulated fibrillin-1 expression in comparison to the methyglyoxal treatment. In addition, the possibility of the extract as an anti-skin aging agent has also been clinically validated. Our analysis of the crow's feet wrinkle showed that there was a decrease in the depth of deep furrows in RI treated with AQFE cream over an eight-week period. The overall results suggest that AQFE may work as an anti-skin aging agent by preventing oxidative stress and other complications associated with AGEs formation.


Subject(s)
Fruit/chemistry , Glycation End Products, Advanced/metabolism , Magnoliopsida/chemistry , Plant Extracts/pharmacology , Skin Aging/drug effects , Adult , Antioxidants/pharmacology , Cell Line , Female , Fibrillin-1 , Fibrillins , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Lysine/analogs & derivatives , Lysine/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Middle Aged , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Skin/drug effects
7.
Molecules ; 20(9): 17557-69, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26402665

ABSTRACT

Andrographis paniculata (A. paniculata, Chuanxinlian), a medicinal herb with an extremely bitter taste that is native to China and other parts of Southeast Asia, possesses immense therapeutic value; however, its therapeutic properties have rarely been applied in the field of skin care. In this study, we investigated the effect of an A. paniculata extract (APE) on human epidermal stem cells (EpSCs), and confirmed its anti-aging effect through in vitro, ex vivo, and in vivo study. An MTT assay was used to determine cell proliferation. A flow cytometric analysis, with propidium iodide, was used to evaluate the cell cycle. The expression of integrin ß1 (CD29), the stem cell marker, was detected with antibodies, using flow cytometry in vitro, and immunohistochemical assays in ex vivo. Type 1 collagen and VEGF (vascular endothelial growth factor) were measured using an enzyme-linked immunosorbent assay (ELISA). During the clinical study, skin hydration, elasticity, wrinkling, sagging, and dermal density were evaluated before treatment and at four and eight weeks after the treatment with the test product (containing the APE) on the face. The proliferation of the EpSCs, treated with the APE, increased significantly. In the cell cycle analysis, the APE increased the G2/M and S stages in a dose-dependent manner. The expression of integrin ß1, which is related to epidermal progenitor cell expansion, was up-regulated in the APE-treated EpSCs and skin explants. In addition, the production of VEGF in the EpSCs increased significantly in response to the APE treatment. Consistent with these results, the VEGF and APE-treated EpSCs conditioned medium enhanced the Type 1 collagen production in normal human fibroblasts (NHFs). In the clinical study, the APE improved skin hydration, dermal density, wrinkling, and sagging significantly. Our findings revealed that the APE promotes a proliferation of EpSCs, through the up-regulation of the integrin ß1 and VEGF expression. The VEGF might affect the collagen synthesis of NHF as a paracrine factor. Clinical studies further suggested that treatment with formulations containing APE confers anti-aging benefits. Based on these results, we suggest that APE may be introduced as a possible anti-aging agent.


Subject(s)
Andrographis/chemistry , Endothelial Progenitor Cells/drug effects , Plant Extracts/therapeutic use , Skin Aging/drug effects , Adult , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Elasticity/drug effects , Endothelial Progenitor Cells/physiology , Female , Gene Expression Regulation/drug effects , Humans , Integrin beta1/metabolism , Mice , Middle Aged , Plant Extracts/administration & dosage , Plant Extracts/chemistry
8.
Article in English | MEDLINE | ID: mdl-22110547

ABSTRACT

Although edible bird's nest (EBN) has been shown to potentiate mitogenic responses, scientific evidence of its efficacy is still limited. In addition, human adipose-derived stem cells (hADSCs) are increasingly accepted as a source for stem cell therapy. Therefore, the aim of this study was to investigate the effects of the EBN extract (EBNE) on the proliferation of hADSCs and its action mechanisms. We found that EBNE strongly promoted the proliferation of hADSCs. In addition, EBNE-induced proliferation was found to be mediated through the production of IL-6 and VEGF, which was induced by activation of AP-1 and NF-κB. Specially, we found that production of IL-6 and VEGF was induced by EBNE. In addition, EBNE-induced production of IL-6 and VEGF was inhibited by PD98059 (a p44/42 MAPK inhibitor), SB203580 (a p38 MAPK inhibitor), and PDTC (a NF-κB inhibitor), but not SP600125 (a JNK inhibitor). Similarly, EBNE-induced proliferation of hADSCs was also attenuated by PD98059, SB203580, and PDTC but not SP600125. Taken together, these findings suggest that the EBNE-induced proliferation of hADSCs primarily occurs through increased expression of IL-6 and VEGF genes, which is mediated by the activation of NF-κB and AP-1 through p44/42 MAPK and p38 MAPK.

SELECTION OF CITATIONS
SEARCH DETAIL