Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nature ; 624(7990): 122-129, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993721

ABSTRACT

Before the colonial period, California harboured more language variation than all of Europe, and linguistic and archaeological analyses have led to many hypotheses to explain this diversity1. We report genome-wide data from 79 ancient individuals from California and 40 ancient individuals from Northern Mexico dating to 7,400-200 years before present (BP). Our analyses document long-term genetic continuity between people living on the Northern Channel Islands of California and the adjacent Santa Barbara mainland coast from 7,400 years BP to modern Chumash groups represented by individuals who lived around 200 years BP. The distinctive genetic lineages that characterize present-day and ancient people from Northwest Mexico increased in frequency in Southern and Central California by 5,200 years BP, providing evidence for northward migrations that are candidates for spreading Uto-Aztecan languages before the dispersal of maize agriculture from Mexico2-4. Individuals from Baja California share more alleles with the earliest individual from Central California in the dataset than with later individuals from Central California, potentially reflecting an earlier linguistic substrate, whose impact on local ancestry was diluted by later migrations from inland regions1,5. After 1,600 years BP, ancient individuals from the Channel Islands lived in communities with effective sizes similar to those in pre-agricultural Caribbean and Patagonia, and smaller than those on the California mainland and in sampled regions of Mexico.


Subject(s)
Genetic Variation , Indigenous Peoples , Humans , Agriculture/history , California/ethnology , Caribbean Region/ethnology , Ethnicity/genetics , Ethnicity/history , Europe/ethnology , Genetic Variation/genetics , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, Ancient , History, Medieval , Human Migration/history , Indigenous Peoples/genetics , Indigenous Peoples/history , Islands , Language/history , Mexico/ethnology , Zea mays , Genome, Human/genetics , Genomics , Alleles
2.
Proc Natl Acad Sci U S A ; 119(41): e2205272119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191217

ABSTRACT

Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece. Unlike the rest of the sample, many soldiers had ancestral origins in northern Europe, the Steppe, and the Caucasus. Integrating genetic, archaeological, isotopic, and historical data, these results illustrate the significant role mercenaries played in ancient Greek armies and highlight how participation in war contributed to continental-scale human mobility in the Classical world.


Subject(s)
Archaeology , Military Personnel , Archaeology/methods , Europe , Greece , History, Ancient , Humans , Warfare
3.
Science ; 377(6601): 72-79, 2022 07.
Article in English | MEDLINE | ID: mdl-35771911

ABSTRACT

Micronesia began to be peopled earlier than other parts of Remote Oceania, but the origins of its inhabitants remain unclear. We generated genome-wide data from 164 ancient and 112 modern individuals. Analysis reveals five migratory streams into Micronesia. Three are East Asian related, one is Polynesian, and a fifth is a Papuan source related to mainland New Guineans that is different from the New Britain-related Papuan source for southwest Pacific populations but is similarly derived from male migrants ~2500 to 2000 years ago. People of the Mariana Archipelago may derive all of their precolonial ancestry from East Asian sources, making them the only Remote Oceanians without Papuan ancestry. Female-inherited mitochondrial DNA was highly differentiated across early Remote Oceanian communities but homogeneous within, implying matrilocal practices whereby women almost never raised their children in communities different from the ones in which they grew up.


Subject(s)
DNA, Ancient , DNA, Mitochondrial , Human Migration , Asian People/genetics , Child , DNA, Mitochondrial/genetics , Female , History, Ancient , Human Migration/history , Humans , Male , Micronesia , Oceania
4.
PLoS One ; 16(3): e0247332, 2021.
Article in English | MEDLINE | ID: mdl-33690651

ABSTRACT

Paleogenomic and bioanthropological studies of ancient massacres have highlighted sites where the victims were male and plausibly died all in battle, or were executed members of the same family as might be expected from a killing intentionally directed at subsets of a community, or where the massacred individuals were plausibly members of a migrant community in conflict with previously established groups, or where there was evidence that the killing was part of a religious ritual. Here we provide evidence of killing on a massive scale in prehistory that was not directed to a specific family, based on genome-wide ancient DNA for 38 of the 41 documented victims of a 6,200 year old massacre in Potocani, Croatia and combining our results with bioanthropological data. We highlight three results: (i) the majority of individuals were unrelated and instead were a sample of what was clearly a large farming population, (ii) the ancestry of the individuals was homogenous which makes it unlikely that the massacre was linked to the arrival of new genetic ancestry, and (iii) there were approximately equal numbers of males and females. Combined with the bioanthropological evidence that the victims were of a wide range of ages, these results show that large-scale indiscriminate killing is a horror that is not just a feature of the modern and historic periods, but was also a significant process in pre-state societies.


Subject(s)
Disaster Victims/history , Forensic Anthropology/methods , Whole Genome Sequencing/methods , Croatia , Female , History, Ancient , Humans , Male , Pedigree
5.
Nature ; 591(7850): 413-419, 2021 03.
Article in English | MEDLINE | ID: mdl-33618348

ABSTRACT

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.


Subject(s)
Genome, Human/genetics , Genomics , Human Migration/history , China , Crop Production/history , Female , Haplotypes/genetics , History, Ancient , Humans , Japan , Language/history , Male , Mongolia , Nepal , Oryza , Polymorphism, Single Nucleotide/genetics , Siberia , Taiwan
6.
Curr Biol ; 30(24): 4846-4856.e6, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33065004

ABSTRACT

The archipelago of Vanuatu has been at the crossroads of human population movements in the Pacific for the past three millennia. To help address several open questions regarding the history of these movements, we generated genome-wide data for 11 ancient individuals from the island of Efate dating from its earliest settlement to the recent past, including five associated with the Chief Roi Mata's Domain World Heritage Area, and analyzed them in conjunction with 34 published ancient individuals from Vanuatu and elsewhere in Oceania, as well as present-day populations. Our results outline three distinct periods of population transformations. First, the four earliest individuals, from the Lapita-period site of Teouma, are concordant with eight previously described Lapita-associated individuals from Vanuatu and Tonga in having almost all of their ancestry from a "First Remote Oceanian" source related to East and Southeast Asians. Second, both the Papuan ancestry predominating in Vanuatu for the past 2,500 years and the smaller component of Papuan ancestry found in Polynesians can be modeled as deriving from a single source most likely originating in New Britain, suggesting that the movement of people carrying this ancestry to Remote Oceania closely followed that of the First Remote Oceanians in time and space. Third, the Chief Roi Mata's Domain individuals descend from a mixture of Vanuatu- and Polynesian-derived ancestry and are related to Polynesian-influenced communities today in central, but not southern, Vanuatu, demonstrating Polynesian genetic input in multiple groups with independent histories.


Subject(s)
Human Migration/history , Native Hawaiian or Other Pacific Islander/genetics , Phylogeny , Anthropology/methods , Body Remains , DNA, Ancient , Female , Haplotypes , History, Ancient , Humans , Male , Vanuatu
7.
Cell ; 181(5): 1146-1157.e11, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32470400

ABSTRACT

We report genome-wide DNA data for 73 individuals from five archaeological sites across the Bronze and Iron Ages Southern Levant. These individuals, who share the "Canaanite" material culture, can be modeled as descending from two sources: (1) earlier local Neolithic populations and (2) populations related to the Chalcolithic Zagros or the Bronze Age Caucasus. The non-local contribution increased over time, as evinced by three outliers who can be modeled as descendants of recent migrants. We show evidence that different "Canaanite" groups genetically resemble each other more than other populations. We find that Levant-related modern populations typically have substantial ancestry coming from populations related to the Chalcolithic Zagros and the Bronze Age Southern Levant. These groups also harbor ancestry from sources we cannot fully model with the available data, highlighting the critical role of post-Bronze-Age migrations into the region over the past 3,000 years.


Subject(s)
DNA, Ancient/analysis , Ethnicity/genetics , Gene Flow/genetics , Archaeology/methods , DNA, Mitochondrial/genetics , Ethnicity/history , Gene Flow/physiology , Genetic Variation/genetics , Genetics, Population/methods , Genome, Human/genetics , Genomics/methods , Haplotypes , History, Ancient , Human Migration/history , Humans , Mediterranean Region , Middle East , Sequence Analysis, DNA
8.
Nature ; 570(7760): 236-240, 2019 06.
Article in English | MEDLINE | ID: mdl-31168094

ABSTRACT

Much of the American Arctic was first settled 5,000 years ago, by groups of people known as Palaeo-Eskimos. They were subsequently joined and largely displaced around 1,000 years ago by ancestors of the present-day Inuit and Yup'ik1-3. The genetic relationship between Palaeo-Eskimos and Native American, Inuit, Yup'ik and Aleut populations remains uncertain4-6. Here we present genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyse these data with data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Using methods based on rare-allele and haplotype sharing, as well as established techniques4,7-9, we show that Palaeo-Eskimo-related ancestry is ubiquitous among people who speak Na-Dene and Eskimo-Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that Na-Dene-speaking peoples, people of the Aleutian Islands, and Yup'ik and Inuit across the Arctic region all share ancestry from a single Palaeo-Eskimo-related Siberian source.


Subject(s)
Human Migration/history , Inuit/classification , Inuit/genetics , Phylogeny , Phylogeography , Africa , Alaska , Alleles , Arctic Regions , Asia, Southeastern , Canada , Europe , Genome, Human/genetics , Haplotypes , History, Ancient , Humans , Principal Component Analysis , Siberia/ethnology
9.
Science ; 363(6432): 1230-1234, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30872528

ABSTRACT

We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia's ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.


Subject(s)
Gene Flow , Genome, Human , Human Migration/history , Africa, Northern , Agriculture/history , Chromosomes, Human, Y , Genomics , History, Ancient , Humans , Portugal , Spain
10.
Nature ; 555(7695): 197-203, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29466330

ABSTRACT

Farming was first introduced to Europe in the mid-seventh millennium bc, and was associated with migrants from Anatolia who settled in the southeast before spreading throughout Europe. Here, to understand the dynamics of this process, we analysed genome-wide ancient DNA data from 225 individuals who lived in southeastern Europe and surrounding regions between 12000 and 500 bc. We document a west-east cline of ancestry in indigenous hunter-gatherers and, in eastern Europe, the early stages in the formation of Bronze Age steppe ancestry. We show that the first farmers of northern and western Europe dispersed through southeastern Europe with limited hunter-gatherer admixture, but that some early groups in the southeast mixed extensively with hunter-gatherers without the sex-biased admixture that prevailed later in the north and west. We also show that southeastern Europe continued to be a nexus between east and west after the arrival of farmers, with intermittent genetic contact with steppe populations occurring up to 2,000 years earlier than the migrations from the steppe that ultimately replaced much of the population of northern Europe.


Subject(s)
Farmers/history , Genome, Human/genetics , Genomics , Human Migration/history , Agriculture/history , Asia/ethnology , DNA, Ancient , Europe , Female , Genetics, Population , Grassland , History, Ancient , Humans , Male , Sex Distribution
11.
Nature ; 555(7695): 190-196, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29466337

ABSTRACT

From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.


Subject(s)
Cultural Evolution/history , Genome, Human/genetics , Genomics , Human Migration/history , Chromosomes, Human, Y/genetics , DNA, Ancient , Europe , Gene Pool , Genetics, Population , Haplotypes , History, Ancient , Humans , Male , Spatio-Temporal Analysis
12.
Nature ; 551(7680): 368-372, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29144465

ABSTRACT

Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants who received a limited amount of admixture from resident hunter-gatherers. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Here we investigate the population dynamics of Neolithization across Europe using a high-resolution genome-wide ancient DNA dataset with a total of 180 samples, of which 130 are newly reported here, from the Neolithic and Chalcolithic periods of Hungary (6000-2900 bc, n = 100), Germany (5500-3000 bc, n = 42) and Spain (5500-2200 bc, n = 38). We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways in which gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modelling approaches to elucidate multiple dimensions of historical population interactions.


Subject(s)
Farmers/history , Gene Flow/genetics , Genetic Variation , Human Migration/history , DNA, Ancient/analysis , Datasets as Topic , Female , Germany , History, Ancient , Humans , Hungary , Male , Population Dynamics , Spain , Spatio-Temporal Analysis
13.
Nature ; 548(7666): 214-218, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28783727

ABSTRACT

The origins of the Bronze Age Minoan and Mycenaean cultures have puzzled archaeologists for more than a century. We have assembled genome-wide data from 19 ancient individuals, including Minoans from Crete, Mycenaeans from mainland Greece, and their eastern neighbours from southwestern Anatolia. Here we show that Minoans and Mycenaeans were genetically similar, having at least three-quarters of their ancestry from the first Neolithic farmers of western Anatolia and the Aegean, and most of the remainder from ancient populations related to those of the Caucasus and Iran. However, the Mycenaeans differed from Minoans in deriving additional ancestry from an ultimate source related to the hunter-gatherers of eastern Europe and Siberia, introduced via a proximal source related to the inhabitants of either the Eurasian steppe or Armenia. Modern Greeks resemble the Mycenaeans, but with some additional dilution of the Early Neolithic ancestry. Our results support the idea of continuity but not isolation in the history of populations of the Aegean, before and after the time of its earliest civilizations.


Subject(s)
Ethnicity/genetics , Phylogeny , Chromosomes, Human, X/genetics , Ethnicity/history , Female , Greece , History, Ancient , Human Migration/history , Humans , Male , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis
14.
Nat Commun ; 8: 14615, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256537

ABSTRACT

During the 1st millennium before the Common Era (BCE), nomadic tribes associated with the Iron Age Scythian culture spread over the Eurasian Steppe, covering a territory of more than 3,500 km in breadth. To understand the demographic processes behind the spread of the Scythian culture, we analysed genomic data from eight individuals and a mitochondrial dataset of 96 individuals originating in eastern and western parts of the Eurasian Steppe. Genomic inference reveals that Scythians in the east and the west of the steppe zone can best be described as a mixture of Yamnaya-related ancestry and an East Asian component. Demographic modelling suggests independent origins for eastern and western groups with ongoing gene-flow between them, plausibly explaining the striking uniformity of their material culture. We also find evidence that significant gene-flow from east to west Eurasia must have occurred early during the Iron Age.


Subject(s)
Asian People/genetics , Gene Flow , Human Migration/history , Models, Statistical , White People/genetics , DNA, Mitochondrial/genetics , Datasets as Topic , Genetic Variation/genetics , Grassland , History, Ancient , Humans , Kazakhstan , Male , Russia , Transients and Migrants/history
15.
Nature ; 538(7626): 510-513, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27698418

ABSTRACT

The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100-2,700 years before present) and one from Tonga (about 2,700-2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.


Subject(s)
Asian People/genetics , Genome, Human/genetics , Genomics , Human Migration/history , Native Hawaiian or Other Pacific Islander/genetics , Phylogeny , Female , Genetics, Population , History, Ancient , Humans , Male , New Guinea/ethnology , Polynesia/ethnology , Tonga , Vanuatu
16.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27654912

ABSTRACT

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Subject(s)
Genetic Variation/genetics , Genome, Human/genetics , Genomics , Mutation Rate , Phylogeny , Racial Groups/genetics , Animals , Australia , Black People/genetics , Datasets as Topic , Genetics, Population , History, Ancient , Human Migration/history , Humans , Native Hawaiian or Other Pacific Islander/genetics , Neanderthals/genetics , New Guinea , Sequence Analysis, DNA , Species Specificity , Time Factors
17.
Nature ; 536(7617): 419-24, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27459054

ABSTRACT

We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter-gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a 'Basal Eurasian' lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter-gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter-gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.


Subject(s)
Agriculture/history , Genomics , Human Migration/history , Phylogeny , Racial Groups/genetics , Africa, Eastern , Animals , Armenia , Asia , DNA/analysis , Europe , History, Ancient , Humans , Hybridization, Genetic/genetics , Iran , Israel , Jordan , Neanderthals/genetics , Phylogeography , Turkey
18.
Nature ; 534(7606): 200-5, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27135931

ABSTRACT

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.


Subject(s)
Ice Cover , White People/genetics , White People/history , Animals , Biological Evolution , DNA/analysis , DNA/genetics , DNA/isolation & purification , Europe , Female , Founder Effect , Genetics, Population , History, Ancient , Human Migration/history , Humans , Male , Middle East , Neanderthals/genetics , Phylogeny , Population Dynamics , Selection, Genetic , Sequence Analysis, DNA , Time Factors
19.
Nature ; 528(7583): 499-503, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26595274

ABSTRACT

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Subject(s)
Genome, Human/genetics , Selection, Genetic/genetics , Agriculture/history , Asia/ethnology , Body Height/genetics , Bone and Bones , DNA/genetics , DNA/isolation & purification , Diet/history , Europe/ethnology , Genetics, Population , Haplotypes/genetics , History, Ancient , Humans , Immunity/genetics , Male , Multifactorial Inheritance/genetics , Pigmentation/genetics , Sequence Analysis, DNA
20.
Nature ; 522(7555): 207-11, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25731166

ABSTRACT

We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.


Subject(s)
Cultural Evolution/history , Grassland , Human Migration/history , Language/history , Europe/ethnology , Genome, Human/genetics , History, Ancient , Humans , Male , Polymorphism, Genetic/genetics , Population Dynamics , Russia
SELECTION OF CITATIONS
SEARCH DETAIL