Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Exp Neurol ; 327: 113181, 2020 05.
Article in English | MEDLINE | ID: mdl-31930991

ABSTRACT

The human brain consumes more energy than any other organ in the body and it relies on an uninterrupted supply of energy in the form of adenosine triphosphate (ATP) to maintain normal cognitive function. This constant supply of energy is made available through an interdependent system of metabolic pathways in neurons, glia and endothelial cells that each have specialized roles in the delivery and metabolism of multiple energetic substrates. Perturbations in brain energy metabolism is associated with a number of different neurodegenerative conditions including impairments in cognition associated with infection by the Human Immunodeficiency Type 1 Virus (HIV-1). Adaptive changes in brain energy metabolism are apparent early following infection, do not fully normalize with the initiation of antiretroviral therapy (ART), and often worsen with length of infection and duration of anti-retroviral therapeutic use. There is now a considerable amount of cumulative evidence that suggests mild forms of cognitive impairments in people living with HIV-1 (PLWH) may be reversible and are associated with specific modifications in brain energy metabolism. In this review we discuss brain energy metabolism with an emphasis on adaptations that occur in response to HIV-1 infection. The potential for interventions that target brain energy metabolism to preserve or restore cognition in PLWH are also discussed.


Subject(s)
Brain/metabolism , Energy Metabolism/physiology , HIV Infections/metabolism , Adenosine Triphosphate/metabolism , Cognitive Dysfunction/metabolism , Humans
2.
PLoS One ; 10(5): e0124481, 2015.
Article in English | MEDLINE | ID: mdl-26010541

ABSTRACT

Ceramide is a bioactive lipid that plays an important role in stress responses leading to apoptosis, cell growth arrest and differentiation. Ceramide production is due in part to sphingomyelin hydrolysis by sphingomyelinases. In brain, neutral sphingomyelinase 2 (nSMase2) is expressed in neurons and increases in its activity and expression have been associated with pro-inflammatory conditions observed in Alzheimer's disease, multiple sclerosis and human immunodeficiency virus (HIV-1) patients. Increased nSMase2 activity translates into higher ceramide levels and neuronal cell death, which can be prevented by chemical or genetic inhibition of nSMase2 activity or expression. However, to date, there are no soluble, specific and potent small molecule inhibitor tool compounds for in vivo studies or as a starting point for medicinal chemistry optimization. Moreover, the majority of the known inhibitors were identified using bacterial, bovine or rat nSMase2. In an attempt to identify new inhibitor scaffolds, two activity assays were optimized as screening platform using the recombinant human enzyme. First, active hits were identified using a fluorescence-based high throughput compatible assay. Then, hits were confirmed using a 14C sphingomyelin-based direct activity assay. Pharmacologically active compounds and approved drugs were screened using this strategy which led to the identification of cambinol as a novel uncompetitive nSMase2 inhibitor (Ki = 7 µM). The inhibitory activity of cambinol for nSMase2 was approximately 10-fold more potent than for its previously known target, silence information regulator 1 and 2 (SIRT1/2). Cambinol decreased tumor necrosis factor-α or interleukin-1 ß-induced increases of ceramide and cell death in primary neurons. A preliminary study of cambinol structure and activity allowed the identification of the main structural features required for nSMase2 inhibition. Cambinol and its analogs may be useful as nSMase2 inhibitor tool compounds to prevent ceramide-dependent neurodegeneration.


Subject(s)
Naphthalenes/pharmacology , Neuroprotective Agents/pharmacology , Pyrimidinones/pharmacology , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Animals , Cattle , Cell Death/drug effects , Cell Survival/drug effects , Ceramides/biosynthesis , Cytokines/pharmacology , Dendrites/drug effects , Dendrites/pathology , Drug Evaluation, Preclinical , Enzyme Assays , Enzyme Inhibitors/pharmacology , Fluorescence , HEK293 Cells , Hippocampus/pathology , Humans , Interleukin-1beta/pharmacology , Naphthalenes/chemistry , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/chemistry , Pyrimidinones/chemistry , Radioactivity , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology , Sphingomyelin Phosphodiesterase/metabolism , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/pharmacology
3.
J Biomol Screen ; 19(1): 17-31, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23945875

ABSTRACT

Complex biological processes such as inflammation, cell death, migration, proliferation, and the release of biologically active molecules can be used as outcomes in phenotypic assays during early stages of drug discovery. Although target-based approaches have been widely used over the past decades, a disproportionate number of first-in-class drugs have been identified using phenotypic screening. This review details phenotypic assays based on inhibition of microglial activation and their utility in primary and secondary screening, target validation, and pathway elucidation. The role of microglia, both in normal as well as in pathological conditions such as chronic neurodegenerative diseases, is reviewed. Methodologies to assess microglia activation in vitro are discussed in detail, and classes of therapeutic drugs known to decrease the proinflammatory and cytotoxic responses of activated microglia are appraised, including inhibitors of glutaminase, cystine/glutamate antiporter, nuclear factor κB, and mitogen-activated protein kinases.


Subject(s)
Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Microglia/drug effects , Microglia/metabolism , Phenotype , Animals , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism
4.
Biochem Biophys Res Commun ; 443(1): 32-6, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24269238

ABSTRACT

Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.


Subject(s)
Glutamic Acid/metabolism , Glutaminase/antagonists & inhibitors , Microglia/drug effects , Neuroprotective Agents/pharmacology , Small Molecule Libraries/pharmacology , AIDS Dementia Complex/enzymology , Animals , Biological Assay , Brain Ischemia/enzymology , Cells, Cultured , Drug Evaluation, Preclinical , Mice , Microglia/enzymology , Microglia/metabolism , Multiple Sclerosis/enzymology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Small Molecule Libraries/chemistry , Small Molecule Libraries/isolation & purification , Tetradecanoylphorbol Acetate/analogs & derivatives , Tetradecanoylphorbol Acetate/pharmacology , Toll-Like Receptors/agonists , Tumor Necrosis Factor-alpha/pharmacology
5.
Biochem Biophys Res Commun ; 438(2): 243-8, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23850693

ABSTRACT

Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC(1280))) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.


Subject(s)
Apomorphine/chemistry , Azoles/chemistry , Benzophenanthridines/chemistry , Glutaminase/antagonists & inhibitors , Organoselenium Compounds/chemistry , AIDS Dementia Complex/drug therapy , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical , Glutaminase/chemistry , Glutaminase/metabolism , Humans , Inhibitory Concentration 50 , Isoindoles , Neoplasms/drug therapy , RNA, Small Interfering/metabolism , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL