Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Commun Biol ; 5(1): 1384, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36536113

ABSTRACT

Looking for a biological fingerprint relative to new aspects of the relationship between humans and natural environment during prehistoric times is challenging. Although many issues still need to be addressed in terms of authentication and identification, microparticles hidden in ancient dental calculus can provide interesting information for bridging this gap of knowledge. Here, we show evidence about the role of edible plants for the early Neolithic individuals in the central Apennines of the Italian peninsula and relative cultural landscape. Dental calculi from human and animal specimens exhumed at Grotta Mora Cavorso (Lazio), one of the largest prehistoric burial deposits, have returned an archaeobotanical record made up of several types of palaeoecological proxies. The organic fraction of this matrix was investigated by a multidisciplinary approach, whose novelty consisted in the application of next generation sequencing to ancient plant DNA fragments, specifically codifying for maturase K barcode gene. Panicoideae and Triticeae starches, together with genetic indicators of Rosaceae fruits, figs, and Lamiaceae herbs, suggested subsistence practices most likely still based on wild plant resources. On the other hand, pollen, and non-pollen palynomorphs allowed us to outline a general vegetational framework dominated by woodland patches alternated with meadows, where semi-permanent settlements could have been established.


Subject(s)
Calculi , Fruit , Humans , Animals , Plants, Edible , Pollen , Poaceae , Forests , DNA, Ancient
2.
Curr Biol ; 31(12): 2576-2591.e12, 2021 06 21.
Article in English | MEDLINE | ID: mdl-33974848

ABSTRACT

Across Europe, the genetics of the Chalcolithic/Bronze Age transition is increasingly characterized in terms of an influx of Steppe-related ancestry. The effect of this major shift on the genetic structure of populations in the Italian Peninsula remains underexplored. Here, genome-wide shotgun data for 22 individuals from commingled cave and single burials in Northeastern and Central Italy dated between 3200 and 1500 BCE provide the first genomic characterization of Bronze Age individuals (n = 8; 0.001-1.2× coverage) from the central Italian Peninsula, filling a gap in the literature between 1950 and 1500 BCE. Our study confirms a diversity of ancestry components during the Chalcolithic and the arrival of Steppe-related ancestry in the central Italian Peninsula as early as 1600 BCE, with this ancestry component increasing through time. We detect close patrilineal kinship in the burial patterns of Chalcolithic commingled cave burials and a shift away from this in the Bronze Age (2200-900 BCE) along with lowered runs of homozygosity, which may reflect larger changes in population structure. Finally, we find no evidence that the arrival of Steppe-related ancestry in Central Italy directly led to changes in frequency of 115 phenotypes present in the dataset, rather that the post-Roman Imperial period had a stronger influence, particularly on the frequency of variants associated with protection against Hansen's disease (leprosy). Our study provides a closer look at local dynamics of demography and phenotypic shifts as they occurred as part of a broader phenomenon of widespread admixture during the Chalcolithic/Bronze Age transition.


Subject(s)
DNA, Ancient , Genome, Human/genetics , Human Migration/history , Datasets as Topic , Genetics, Population , Genomics , History, Ancient , Humans , Italy , Leprosy/genetics , Phenotype
3.
C R Biol ; 335(7): 472-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22847014

ABSTRACT

The analysis of ancient DNA (aDNA) provides archaeologists and anthropologists with innovative, scientific and accurate data to study and understand the past. In this work, ancient seeds, found in the "Mora Cavorso" archaeological site (Latium, Central Italy), were analyzed to increase information about Italian Neolithic populations (plant use, agriculture, diet, trades, customs and ecology). We performed morphological and genetic techniques to identify fossil botanical species. In particular, this study also suggests and emphasizes the use of DNA barcode method for ancient plant sample analysis. Scanning electron microscope (SEM) observations showed seed compact structure and irregular surface but they did not permit a precise nor empirical classification: so, a molecular approach was necessary. DNA was extracted from ancient seeds and then it was used, as template, for PCR amplifications of standardized barcode genes. Although aDNA could be highly degraded by the time, successful PCR products were obtained, sequenced and compared to nucleotide sequence databases. Positive outcomes (supported by morphological comparison with modern seeds, geographical distribution and historical data) indicated that seeds could be identified as belonging to two plant species: Olea europaea L. and Cornus mas L.


Subject(s)
Agriculture/history , Archaeology/methods , Cornus/genetics , DNA, Plant/analysis , Fossils , Genes, Plant , Olea/genetics , Seeds/chemistry , Caves , Cornus/classification , DNA Barcoding, Taxonomic , DNA, Plant/isolation & purification , Databases, Genetic , History, Ancient , Italy , Microscopy, Electron, Scanning , Olea/classification , Polymerase Chain Reaction/methods , Seeds/ultrastructure , Sequence Alignment , Sequence Homology, Nucleic Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL