Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Cells ; 12(2)2023 01 11.
Article in English | MEDLINE | ID: mdl-36672224

ABSTRACT

An innovative approach to the management of waste in the form of ash obtained during biomass combustion is justified due to its specific properties, including the presence of macro- and microelements. The aim of the current study was to determine the concentration of ash obtained from Sorghum combustion regarding its fertilizer value and its effect on the cytological structures, physiological parameters, growth and development of Lemnaceae plants, thereby demonstrating the possibility of using this waste to supplement culture media. The analyses showed that the use of ash in the in vitro cultivation of Lemnaceae aquatic plants had a dose-dependent effect. The addition of 2% ash favorably affected the condition of plant roots, i.e., meristem elongation and an increase in nucleoli sizes as well as improving the chlorophyll content index, gas exchange parameters, chemical oxygen demand (COD) and plant vigor via PSII, which was confirmed by a chlorophyll fluorescence measurement. On the other hand, too high of a concentration, i.e., 10% ash, adversely affected the plant development and parameters studied. Concluding, the use of ash at a low concentration favorably affected the yielding of Spirodela polyrrhiza, whose biomass can be used for energy purposes in the production of bioethanol, plant biogas or the phytoremediation of industrial waters and leachate.


Subject(s)
Chlorophyll , Plants , Biodegradation, Environmental , Dietary Supplements
2.
Sci Rep ; 10(1): 1675, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32015369

ABSTRACT

Farmland soil typical for the Polish rural environment was used in pot experiment to estimate the impact of cadmium and zinc on the manganese, lead and copper uptake by lemon balm (Melissa officinalis L). Bioavailable and total forms of investigated metals in soil and metal concentrations in plants were determined by atomic absorption spectrometry. The plant photosynthesis indicators were also examined. Intensification of photosynthesis upon the high zinc and cadmium soil supplementation was observed. This effect was not detected at low metal concentrations. ANOVA proved that cadmium and zinc treatments influenced manganese, lead and copper transfer from soil and their concentration in plants. Zinc uptake and accumulation in either roots or above-ground parts in plant was inversely proportional to cadmium concentration in soil. Manganese concentration in roots decreased upon the soil supplementation with either zinc or cadmium. It suggests that the latter ions are transported via symplastic pathways and compete with manganese for similar transporters. The opposite situation was observed for lead and copper. Soil supplementation with cadmium and zinc affects manganese, lead and copper concentrations and photosynthesis intensity in lemon balm plant. The following combined interactions in either normal or stress conditions are important indicators of the migration pathways.


Subject(s)
Cadmium/metabolism , Copper/metabolism , Lead/metabolism , Manganese/metabolism , Melissa/metabolism , Zinc/metabolism , Biological Transport/physiology , Organic Chemicals/metabolism , Photosynthesis/drug effects , Plant Roots/metabolism , Soil/chemistry , Soil Pollutants/metabolism
3.
Molecules ; 24(13)2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31277450

ABSTRACT

Lemon balm (Melissa officinalis) is a popular herb widely used in medicine. It is often cultivated in soils with substantial heavy metal content. Here we investigate the associated effects of cadmium and copper on the plant growth parameters augmented by the manganese, zinc, and lead uptake indicators. The concentration of all elements in soil and plants was determined by the HR-CS FAAS with the ContrAA 300 Analytik Jena spectrometer. Bioavailable and total forms calculated for all examined metals were augmented by the soil analyses. The index of chlorophyll content in leaves, the activity of net photosynthesis, stomatal conductance, transpiration rate, and intercellular concentration of CO2 were also investigated. Either Cd or Cu acting alone at high concentrations in soil are toxic to plants as indicated by chlorophyll indices and gas exchange parameters. Surprisingly, this effect was not observed when both metals were administered together. The sole cadmium or copper supplementations hampered the plant's growth, lowered the leaf area, and altered the plant's stem elongation. Analysis of variance showed that cadmium and copper treatments of lemon balm significantly influenced manganese, lead, and zinc concentration in roots and above ground parts.


Subject(s)
Cadmium/toxicity , Copper/toxicity , Melissa/metabolism , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Melissa/drug effects , Photosynthesis/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Plant Stomata/drug effects , Plant Transpiration/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL