Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Inflammopharmacology ; 29(1): 205-219, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32356088

ABSTRACT

Gentianella acuta (G. acuta), as a folk medicine, was used to treat heart disease by the Ewenki people in Inner Mongolia. However, the effect of G. acuta on acute myocardial infarction (AMI) is not clear. To explore the mechanisms of G. acuta on isoproterenol (ISO)-induced AMI, rats were administered G. acuta for 28 days, then injected intraperitoneally with ISO (85 mg/kg) on days 29 and 30. An electrocardiogram helped to evaluate the myocardial injury. Serum lactate dehydrogenase (LDH), creatinine kinase (CK) and aspartate aminotransferase (AST) levels were evaluated, and haematoxylin eosin, Masson's trichrome staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining were used to detect myocardial histological changes. Radioimmunoassay was used to measure serum tumour necrosis factor alpha (TNFα) and interleukin (IL)-6. An enzyme-linked immunosorbent assay kit was used to analyse serum galectin-3 (Gal-3) levels. Immunohistochemistry, Western blotting and reverse transcription polymerase chain reaction were used to examine relevant molecular events. The results revealed that pre-treatment with G. acuta decreased the elevation in the ST segment; reduced serum LDH, CK and AST levels; alleviated cardiac structure disorder; and reduced inflammatory infiltration, abnormal collagen deposition and cardiomyocyte apoptosis that were induced by ISO. Furthermore, pre-treatment with G. acuta inhibited serum Gal-3 levels and Gal-3 expression in heart tissue, and also impeded TLR4/MyD88/NF-кB signalling activation, which ultimately prevented the expression of inflammatory cytokines. The study indicated that pre-treatment with G. acuta protects against ISO-induced AMI, and the protective role may be related to inhibiting Gal-3/TLR4/MyD88/NF-кB inflammatory signalling.


Subject(s)
Cardiotonic Agents/pharmacology , Gentianella/chemistry , Myocardial Infarction/prevention & control , Plant Extracts/pharmacology , Animals , Apoptosis/drug effects , Cardiotonic Agents/isolation & purification , Cytokines/metabolism , Galectin 3/metabolism , Inflammation/drug therapy , Inflammation/pathology , Isoproterenol/toxicity , Male , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
2.
Biomed Pharmacother ; 126: 110071, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32172066

ABSTRACT

Myocardial fibrosis (MF) plays a key role in the development and progression of heart failure (HF) with limited effective therapies. Galectin-3 (Gal-3) is a biomarker associated with fibrosis and inflammation in patients with HF. The Gal-3 inhibitor modified citrus pectin (MCP) protects against cardiac dysfunction, though the underlying mechanism remains unclear. The aim of this study was to investigate the effect and mechanism of MCP on MF using an isoproterenol (ISO)-induced rat model of HF. Cardiac function was analyzed by echocardiography and electrocardiography. Histopathological changes in the heart tissue were assessed by hematoxylin-eosin and Masson trichrome staining. The mRNA and protein expression levels of signaling molecules and pro-inflammatory cytokines were monitored by immunohistochemistry, western blot, qRT-PCR and ELISA analyses. The results demonstrated that MCP ameliorated cardiac dysfunction, decreased myocardial injury and reduced collagen deposition. Furthermore, MCP downregulated the expression of Gal-3, TLR4 and MyD88, thereby inhibiting NF-κB-p65 activation. MCP also decreased the expression of IL-1ß, IL-18 and TNF-α, which have been implicated in the pathogenesis of HF. These inhibitory effects were observed on day 15 and continued until day 22. Taken together, these results suggest that MCP ameliorates cardiac dysfunction through inhibiting inflammation and MF. These effects may be through downregulating Gal-3 expression and suppressing activation of the TLR4/MyD88/NF-κB signaling pathway. The present study supports the use of Gal-3 as a therapeutic target for the treatment of MF after myocardial infarction.


Subject(s)
Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Galectin 3/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Pectins/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Animals , Biomarkers , Biopsy , Cardiomyopathies/diagnosis , Cardiomyopathies/drug therapy , Cytokines/metabolism , Disease Susceptibility , Echocardiography , Electrocardiography , Fibrosis , Galectin 3/genetics , Heart Function Tests , Immunohistochemistry , Inflammation , Inflammation Mediators/metabolism , Male , Models, Biological , Rats
SELECTION OF CITATIONS
SEARCH DETAIL