Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cereb Cortex ; 33(14): 9130-9143, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37288477

ABSTRACT

Action-effect predictions are believed to facilitate movement based on its association with sensory objectives and suppress the neurophysiological response to self- versus externally generated stimuli (i.e. sensory attenuation). However, research is needed to explore theorized differences in the use of action-effect prediction based on whether movement is uncued (i.e. volitional) or in response to external cues (i.e. stimulus-driven). While much of the sensory attenuation literature has examined effects involving the auditory N1, evidence is also conflicted regarding this component's sensitivity to action-effect prediction. In this study (n = 64), we explored the influence of action-effect contingency on event-related potentials associated with visually cued and uncued movement, as well as resultant stimuli. Our findings replicate recent evidence demonstrating reduced N1 amplitude for tones produced by stimulus-driven movement. Despite influencing motor preparation, action-effect contingency was not found to affect N1 amplitudes. Instead, we explore electrophysiological markers suggesting that attentional mechanisms may suppress the neurophysiological response to sound produced by stimulus-driven movement. Our findings demonstrate lateralized parieto-occipital activity that coincides with the auditory N1, corresponds to a reduction in its amplitude, and is topographically consistent with documented effects of attentional suppression. These results provide new insights into sensorimotor coordination and potential mechanisms underlying sensory attenuation.


Subject(s)
Auditory Perception , Electroencephalography , Auditory Perception/physiology , Evoked Potentials/physiology , Attention/physiology , Sound , Evoked Potentials, Auditory/physiology , Acoustic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL