Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Nutrients ; 14(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36235784

ABSTRACT

Minerals and vitamins involved in the antioxidant defense system are essential for healthy growth and proper development during infancy. Milk and dairy products are of particular importance for improving the supply of these nutrients to children. Indeed, the present study aimed to evaluate the nutrient intake and food sources of zinc (Zn), selenium (Se), retinol and carotenoids (sources of vitamin A), and vitamins C and E, and to analyze their relationships with personal and familiar factors in Spanish children from the EsNuPI study. One subpopulation representative of the Spanish population from 1 to <10 years old (n = 707) (reference group, REF) who reported consuming all types of milk over the last year, and another subpopulation of the same age who reported consuming fortified milk formulas (FMFs) (including follow-on formula, young child formula, growing up milk, toddler's milk, and enriched and fortified milk) (n = 741) (fortified milk consumers, FMCs) completed two 24 h dietary recalls used to estimate their nutrient intakes and to compare them to the European Food Safety Authority (EFSA) Dietary Reference Values (DRVs). The REF reported higher median intakes than FMCs for Se (61 µg/kg vs. 51 µg/kg) and carotenoids (1079 µg/day vs. 998 µg/day). Oppositely, FMCs reported higher intakes than REF for Zn (7.9 mg/day vs. 6.9 mg/day), vitamin A (636 µg/day vs. 481 µg/day), vitamin E (8.9 mg/day vs. 4.5 mg/day), vitamin C (113 mg/day vs. 71 mg/day), and retinol (376 µg/day vs. 233 µg/day). In the REF group, more than 50% of the children met the EFSA recommendations for Zn (79.6%), Se (87.1%), vitamin A (71.3%), and vitamin C (96.7%), respectively. On the other hand, 92.2% were below the EFSA recommendations for vitamin E. In the FMC group, more than 50% of the children met the EFSA recommendations for Zn (55.2%), Se (90.8%), vitamin A (75.7%), vitamin E (66.7%), and vitamin C (100%). We found statistically significant differences between subpopulations for all cases except for Se. In both subpopulations, the main sources of all antioxidant nutrients were milk and dairy products. For carotenoids, the main sources were vegetables and fruits followed by milk and dairy products. A high percentage of children had vitamins A and E intakes below the recommendations, information of great importance to stakeholders. More studies using intakes and biomarkers are needed, however, to determine an association with diverse factors of oxidative damage.


Subject(s)
Selenium , Vitamins , Animals , Antioxidants , Ascorbic Acid , Child , Eating , Humans , Milk , Vitamin A , Vitamin E , Vitamin K , Zinc
2.
Nutrients ; 12(8)2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32824377

ABSTRACT

We aimed to determine the usual intake of total fat, fatty acids (FAs), and their main food sources in a representative cohort of the Spanish pediatric population aged 1 to <10 years (n = 707) who consumed all types of milk and an age-matched cohort who consumed adapted milk over the last year (including follow-on formula, toddler's milk, growing-up milk, and fortified and enriched milks) (n = 741) who were participants in the EsNuPI study (in English, Nutritional Study in the Spanish Pediatric Population). Dietary intake, measured through two 24 h dietary recalls, was compared to the European Food Safety Authority (EFSA) and the Food and Agriculture Organization of the United Nations (UN-FAO) recommendations. Both cohorts showed a high intake of saturated fatty acids (SFAs), according to FAO recommendations, as there are no numerical recommendations for SFAs at EFSA. Also, low intake of essential fatty acids (EFAs; linoleic acid (LA) and α-linolenic acid (ALA)) and long-chain polyunsaturated fatty acids (LC-PUFA) of the n-3 series, mainly docosahexaenoic acid (DHA) were observed according to EFSA and FAO recommendations. The three main sources of total fat and different FAs were milk and dairy products, oils and fats, and meat and meat products. The consumption of adapted milk was one of the main factors associated with better adherence to the nutritional recommendations of total fat, SFAs, EFAs, PUFAs; and resulted as the main factor associated with better adherence to n-3 fatty acids intake recommendations. Knowledge of the dietary intake and food sources of total fat and FAs in children could help in designing and promoting effective and practical age-targeted guidelines to promote the consumption of EFA- and n-3 PUFA-rich foods in this stage of life.


Subject(s)
Child Nutritional Physiological Phenomena/physiology , Dietary Fats/administration & dosage , Eating/physiology , Family , Fatty Acids, Essential/administration & dosage , Fatty Acids, Omega-3/administration & dosage , Feeding Behavior/physiology , Food, Fortified , Infant Formula , Milk , Nutrition Surveys , Nutritional Requirements , Recommended Dietary Allowances , Age Factors , Animals , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Spain
3.
J Dairy Sci ; 98(11): 7628-34, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26342988

ABSTRACT

Goat milk has been reported to possess good nutritional and health-promoting properties. Usually, it must be concentrated before fermented products can be obtained. The aim of this study was to compare physicochemical and nutritional variables among raw (RM), skimmed (SM), and ultrafiltration-concentrated skimmed (UFM) goat milk. The density, acidity, ash, protein, casein, whey protein, Ca, P, Mg, and Zn values were significantly higher in UFM than in RM or SM. Dry extract and fat levels were significantly higher in UFM than in SM, and Mg content was significantly higher in UFM than in RM. Ultrafiltration also increased the solubility of Ca and Mg, changing their distribution in the milk. The higher concentrations of minerals and proteins, especially caseins, increase the nutritional value of UFM, which may therefore be more appropriate for goat milk yogurt manufacturing in comparison to RM or SM.


Subject(s)
Milk/chemistry , Nutritive Value , Ultrafiltration , Animals , Calcium/analysis , Chemical Phenomena , Goats , Hydrogen-Ion Concentration , Magnesium/analysis , Milk Proteins/analysis , Phosphorus/analysis , Zinc/analysis
4.
Food Chem ; 188: 234-9, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26041187

ABSTRACT

The aim of this study was to determine the Se, Cu, Cr, and Mn concentrations of different types of goat- and cow-milk fermented products and evaluate the influence of fermenting bacteria (classical fermenting starters and a probiotic strain) on these concentrations. Atomic absorption spectrometry with hydride generation was used to measure Se and electrothermal atomization to measure Cu, Cr and Mn. Analytical parameters determined in the fermented milks demonstrated that the procedures used were adequate for Se, Cu, Cr, and Mn analyses. Se levels were significantly lower in fermented goat milk products than in fermented cow milk products (p<0.05). Se, Cu, Cr, and Mn levels did not differ as a function of the fermenting bacteria used in commercial fermented goat or cow milks or in the lab-produced goat yoghurt. Given the Se, and Cr intakes for healthy adults, goat and cow yogurts may be important dietary sources.


Subject(s)
Chromium/analysis , Copper/analysis , Cultured Milk Products/microbiology , Fermentation , Manganese/analysis , Selenium/analysis , Animals , Cattle , Cultured Milk Products/chemistry , Goats , Probiotics , Spectrophotometry, Atomic
5.
Food Chem ; 187: 314-21, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-25977032

ABSTRACT

Ca, Mg, Zn and P bioavailability from two experimental ultrafiltered fermented goats' milks (one of them with the probiotic Lactobacillus plantarum and another one without it), and fermented goats' milk samples available in the market were evaluated. Solubility, dialysability and a model combining simulated gastrointestinal digestion and mineral retention, transport and uptake by Caco-2 cells were used to assess bioavailability. The highest Ca, Mg, Zn and P bioavailability values always corresponded to the fermented milk developed by our research group, which could be explained by the effect of milk ultrafiltration. The fermented milk with L. plantarum showed higher Ca retention than the ones without the microorganism, and major Ca uptake when compared to commercial products. This fact could be attributed to a positive effect exerted by the probiotic strain.


Subject(s)
Calcium, Dietary/pharmacokinetics , Lactobacillus plantarum , Magnesium/pharmacokinetics , Milk/chemistry , Phosphorus/pharmacokinetics , Zinc/pharmacokinetics , Animals , Biological Availability , Caco-2 Cells , Fermentation , Goats , Humans , Probiotics , Ultrafiltration
SELECTION OF CITATIONS
SEARCH DETAIL