Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27654912

ABSTRACT

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Subject(s)
Genetic Variation/genetics , Genome, Human/genetics , Genomics , Mutation Rate , Phylogeny , Racial Groups/genetics , Animals , Australia , Black People/genetics , Datasets as Topic , Genetics, Population , History, Ancient , Human Migration/history , Humans , Native Hawaiian or Other Pacific Islander/genetics , Neanderthals/genetics , New Guinea , Sequence Analysis, DNA , Species Specificity , Time Factors
2.
PLoS One ; 7(6): e38862, 2012.
Article in English | MEDLINE | ID: mdl-22768049

ABSTRACT

Culture and genetics rely on two distinct but not isolated transmission systems. Cultural processes may change the human selective environment and thereby affect which individuals survive and reproduce. Here, we evaluated whether the modes of subsistence in Native American populations and the frequencies of the ABCA1*Arg230Cys polymorphism were correlated. Further, we examined whether the evolutionary consequences of the agriculturally constructed niche in Mesoamerica could be considered as a gene-culture coevolution model. For this purpose, we genotyped 229 individuals affiliated with 19 Native American populations and added data for 41 other Native American groups (n = 1905) to the analysis. In combination with the SNP cluster of a neutral region, this dataset was then used to unravel the scenario involved in 230Cys evolutionary history. The estimated age of 230Cys is compatible with its origin occurring in the American continent. The correlation of its frequencies with the archeological data on Zea pollen in Mesoamerica/Central America, the neutral coalescent simulations, and the F(ST)-based natural selection analysis suggest that maize domestication was the driving force in the increase in the frequencies of 230Cys in this region. These results may represent the first example of a gene-culture coevolution involving an autochthonous American allele.


Subject(s)
Biological Evolution , Culture , Ecosystem , Indians, North American/genetics , Models, Biological , Agriculture , Alleles , Gene Frequency/genetics , Genetic Association Studies , Genetic Loci/genetics , Genetics, Population , Genotype , Geography , Humans , Pollen/growth & development , Polymorphism, Single Nucleotide/genetics , Radiometric Dating , Regression Analysis , Zea mays/growth & development
3.
Am J Hum Genet ; 73(3): 524-39, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12900798

ABSTRACT

To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.


Subject(s)
Asian People/genetics , Chromosomes, Human, Y , Emigration and Immigration/history , Genetics, Population/history , Indians, North American/genetics , Indians, South American/genetics , Asian People/history , Canada , Genetic Markers , Haplotypes , History, Ancient , Humans , Indians, North American/history , Indians, South American/history , Male , Microsatellite Repeats , Polymorphism, Genetic , Siberia , South America
SELECTION OF CITATIONS
SEARCH DETAIL