Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Biosens Bioelectron ; 194: 113590, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34474278

ABSTRACT

Combating the ongoing COVID-19 pandemic has put the spotlight on nutritional support of the immune system through consumption of vitamins C and D. Accordingly, there are urgent demands for an effective on-the-spot multi-vitamin self-testing platform that monitors the levels of these immune-supporting micronutrients for guiding precision nutrition recommendations. Herein, we present a compact bioelectronic dual sensor chip aimed at frequent on-the-spot simultaneous monitoring of the salivary vitamin C and D dynamics. The new bioelectronic chip combines a new electrocatalytic vitamin C amperometric assay along with competitive vitamin D immunoassay on neighboring electrodes, to perform selective and cross-talk free detection of both vitamins in a 10-µL saliva sample within 25 min. The distinct vitamin C or D temporal profiles obtained for different individuals after vitamin supplementation indicate the potential of the new bioelectronic chip strategy for enhancing personalized nutrition towards guiding dietary interventions to meet individual nutrition needs and promote immune system health.


Subject(s)
Biosensing Techniques , COVID-19 , Ascorbic Acid , Humans , Immune System , Pandemics , SARS-CoV-2 , Vitamin D , Vitamins
2.
Anal Bioanal Chem ; 412(21): 5031-5041, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31745609

ABSTRACT

This paper reports a simple electrochemical strategy for the determination of microRNAs (miRNAs) using a commercial His-Tag-Zinc finger protein (His-Tag-ZFP) that binds preferably (but non-sequence specifically) RNA hybrids over ssRNAs, ssDNAs, and dsDNAs. The strategy involves the use of magnetic beads (His-Tag-Isolation-MBs) as solid support to capture the conjugate formed in homogenous solution between His-Tag-ZFP and the dsRNA homohybrid formed between the target miRNA (miR-21 selected as a model) and a biotinylated synthetic complementary RNA detector probe (b-RNA-Dp) further conjugated with a streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The electrochemical detection is carried out by amperometry at disposable screen-printed carbon electrodes (SPCEs) (- 0.20 V vs Ag pseudo-reference electrode) upon magnetic capture of the resultant magnetic bioconjugates and H2O2 addition in the presence of hydroquinone (HQ). The as-prepared biosensor exhibits a dynamic concentration range from 3.0 to 100 nM and a detection limit (LOD) of 0.91 nM for miR-21 in just ~ 2 h. An acceptable discrimination was achieved between the target miRNA and other non-target nucleic acids (ssDNA, dsDNA, ssRNA, DNA-RNA, miR-122, miR-205, and single central- or terminal-base mismatched sequences). The biosensor was applied to the analysis of miR-21 from total RNA (RNAt) extracted from epithelial non-tumorigenic and adenocarcinoma breast cells without target amplification, pre-concentration, or reverse transcription steps. The versatility of the methodology due to the ZFP's non-sequence-specific binding behavior makes it easily extendable to determine any target RNA only by modifying the biotinylated detector probe.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , MicroRNAs/analysis , Zinc Fingers , Cell Line , Cell Line, Tumor , Humans , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL