Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Molecules ; 27(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36364000

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this condition, however, there is no cure yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects, such as downregulating the expression of several proteins, including the transforming growth factor beta (TGF-ß), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due to their ability to reduce the generation of free radicals and upregulating the antioxidant systems, such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier (BBB). These properties have led to significant improvements in the neurologic outcomes of multiple experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy. Such diseases have mutual biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying the potential of repurposing the SGLT2 inhibitors' use in ameliorating the symptoms of ASD. This review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin. Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable of crossing the blood-brain barrier (BBB).


Subject(s)
Alzheimer Disease , Autism Spectrum Disorder , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Mice , Animals , Rats , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Autism Spectrum Disorder/drug therapy , Antioxidants/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Biomarkers , Alzheimer Disease/drug therapy , Hypoglycemic Agents/pharmacology
2.
Biomed Pharmacother ; 140: 111639, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34091179

ABSTRACT

The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, ß-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.


Subject(s)
Cannabinoids/pharmacology , Polycyclic Sesquiterpenes/pharmacology , Receptor, Cannabinoid, CB2/metabolism , Animals , Dietary Supplements , Humans , Plants, Edible/chemistry , Sesquiterpenes/pharmacology
3.
Molecules ; 27(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35011414

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic condition characterized by persistent hyperglycemia due to insufficient insulin levels or insulin resistance. Despite the availability of several oral and injectable hypoglycemic agents, their use is associated with a wide range of side effects. Monoterpenes are compounds extracted from different plants including herbs, vegetables, and fruits and they contribute to their aroma and flavor. Based on their chemical structure, monoterpenes are classified into acyclic, monocyclic, and bicyclic monoterpenes. They have been found to exhibit numerous biological and medicinal effects such as antipruritic, antioxidant, anti-inflammatory, and analgesic activities. Therefore, monoterpenes emerged as promising molecules that can be used therapeutically to treat a vast range of diseases. Additionally, monoterpenes were found to modulate enzymes and proteins that contribute to insulin resistance and other pathological events caused by DM. In this review, we highlight the different mechanisms by which monoterpenes can be used in the pharmacological intervention of DM via the alteration of certain enzymes, proteins, and pathways involved in the pathophysiology of DM. Based on the fact that monoterpenes have multiple mechanisms of action on different targets in in vitro and in vivo studies, they can be considered as lead compounds for developing effective hypoglycemic agents. Incorporating these compounds in clinical trials is needed to investigate their actions in diabetic patients in order to confirm their ability in controlling hyperglycemia.


Subject(s)
Hypoglycemic Agents/pharmacology , Monoterpenes/pharmacology , Animals , Biomarkers , Clinical Decision-Making , Clinical Studies as Topic , Diabetes Mellitus/drug therapy , Diabetes Mellitus/etiology , Diabetes Mellitus/metabolism , Disease Susceptibility , Drug Evaluation, Preclinical , Glucose/metabolism , Humans , Hyperglycemia/drug therapy , Hyperglycemia/etiology , Hyperglycemia/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Insulin Resistance , Monoterpenes/chemistry , Monoterpenes/therapeutic use , Structure-Activity Relationship
4.
Nutrients ; 12(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998300

ABSTRACT

Diabetes mellitus (DM), a metabolic disorder is one of the most prevalent chronic diseases worldwide across developed as well as developing nations. Hyperglycemia is the core feature of the type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), following insulin deficiency and impaired insulin secretion or sensitivity leads insulin resistance (IR), respectively. Genetic and environmental factors attributed to the pathogenesis of DM and various therapeutic strategies are available for the prevention and treatment of T2DM. Among the numerous therapeutic approaches, the health effects of dietary/nutraceutical approach due to the presence of bioactive constituents, popularly termed phytochemicals are receiving special interest for pharmacological effects and therapeutic benefits. The phytochemicals classes, in particular sesquiterpenes received attention because of potent antioxidant, anti-inflammatory, and antihyperglycemic effects and health benefits mediating modulation of enzymes, receptors, and signaling pathways deranged in DM and its complications. One of the terpene compounds, ß-caryophyllene (BCP), received enormous attention because of its abundant occurrence, non-psychoactive nature, and dietary availability through consumption of edible plants including spices. BCP exhibit selective full agonism on cannabinoid receptor type 2 (CB2R), an important component of endocannabinoid system, and plays a role in glucose and lipid metabolism and represents the newest drug target for chronic inflammatory diseases. BCP also showed agonist action on peroxisome proliferated activated receptor subtypes, PPAR-α and PPAR-γ, the main target of currently used fibrates and imidazolidinones for dyslipidemia and IR, respectively. Many studies demonstrated its antioxidant, anti-inflammatory, organoprotective, and antihyperglycemic properties. In the present review, the plausible therapeutic potential of BCP in diabetes and associated complications has been comprehensively elaborated based on experimental and a few clinical studies available. Further, the pharmacological and molecular mechanisms of BCP in diabetes and its complications have been represented using synoptic tables and schemes. Given the safe status, abundant natural occurrence, oral bioavailability, dietary use and pleiotropic properties modulating receptors and enzymes, BCP appears as a promising molecule for diabetes and its complications.


Subject(s)
Cannabinoid Receptor Agonists/pharmacokinetics , Diabetes Mellitus/therapy , Phytochemicals/pharmacokinetics , Polycyclic Sesquiterpenes/pharmacokinetics , Animals , Anti-Inflammatory Agents/pharmacokinetics , Antioxidants/pharmacokinetics , Biological Availability , Diet/methods , Humans , Hypoglycemic Agents/pharmacokinetics
5.
Front Pharmacol ; 9: 1555, 2018.
Article in English | MEDLINE | ID: mdl-30941047

ABSTRACT

α-Synuclein (α-syn) is a presynaptic protein that regulates the release of neurotransmitters from synaptic vesicles in the brain. α-Syn aggregates, including Lewy bodies, are features of both sporadic and familial forms of Parkinson's disease (PD). These aggregates undergo several key stages of fibrillation, oligomerization, and aggregation. Therapeutic benefits of drugs decline with disease progression and offer only symptomatic treatment. Novel therapeutic strategies are required which can either prevent or delay the progression of the disease. The link between α-syn and the etiopathogenesis and progression of PD are well-established in the literature. Studies indicate that α-syn is an important therapeutic target and inhibition of α-syn aggregation, oligomerization, and fibrillation are an important disease modification strategy. However, recent studies have shown that plant extracts and phytochemicals have neuroprotective effects on α-syn oligomerization and fibrillation by targeting different key stages of its formation. Although many reviews on the antioxidant-mediated, neuroprotective effect of plant extracts and phytochemicals on PD symptoms have been well-highlighted, the antioxidant mechanisms show limited success for translation to clinical studies. The identification of specific plant extracts and phytochemicals that target α-syn aggregation will provide selective molecules to develop new drugs for PD. The present review provides an overview of plant extracts and phytochemicals that target α-syn in PD and summarizes the observed effects and the underlying mechanisms. Furthermore, we provide a synopsis of current experimental models and techniques used to evaluate plant extracts and phytochemicals. Plant extracts and phytochemicals were found to inhibit the aggregation or fibril formation of oligomers. These also appear to direct α-syn oligomer formation into its unstructured form or promote non-toxic pathways and suggested to be valuable drug candidates for PD and related synucleinopathy. Current evidences from in vitro studies require confirmation in the in vivo studies. Further studies are needed to ascertain their potential effects and safety in preclinical studies for pharmaceutical/nutritional development of these phytochemicals or dietary inclusion of the plant extracts in PD treatment.

6.
Oxid Med Cell Longev ; 2016: 4320374, 2016.
Article in English | MEDLINE | ID: mdl-27774117

ABSTRACT

Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in the literature reveal partial amelioration of CSP-induced renal toxicity, stressing the need to develop potent combinatorial/synergistic agents for the mitigation of renal toxicity. However, the ideal renoprotective adjuvant should not interfere with the anticancer efficacy of CSP. In this review, we have discussed the progress made in utilizing plant-derived agents (phytochemicals) to combat CSP-induced nephrotoxicity in preclinical studies. Furthermore, we have also presented strategies to utilize phytochemicals as prototypes for the development of novel renoprotective agents for counteracting chemotherapy-induced renal damage.


Subject(s)
Cisplatin/adverse effects , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Phytochemicals/therapeutic use , Phytotherapy , Animals , Humans , Phytochemicals/pharmacology
7.
Neuropharmacology ; 106: 46-55, 2016 07.
Article in English | MEDLINE | ID: mdl-26525191

ABSTRACT

It has become clear that histamine H3 receptors (H3Rs) are implicated in modulating epilepsy and memory in laboratory animals. The new non-imidazole H3R antagonist DL77 has excellent selectivity profile and shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 values of 2.1 ± 0.2 mg/kg and 8.4 ± 1.3 [nM], respectively. In the present study, the anticonvulsant effects of DL77 on maximal electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced seizure models were investigated. Moreover, the procognitive properties of DL77 were tested on acquisition, consolidation and retrieval processes in a one-trial inhibitory avoidance task in male Wistar rats. The results indicate that DL77 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently reduced MES-induced seizure duration, whereas no protection was observed in PTZ- or STR-induced seizures. Importantly, the protective action observed for DL77 in MES-induced seizure was comparable to that of the reference antiepileptic drug (AED) phenytoin (PHT), and was also reversed when rats were pretreated with the CNS penetrant pyrilamine (PYR) (10 mg/kg, i.p.), or with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg, i.p.). Furthermore, the procognitive studies indicate that acute pre-training systemic administration of DL77 (2.5 mg/kg, i.p.) facilitated acquisition, whereas pre-testing acute administration of DL77 (5 and 10 mg/kg, i.p.) improved retrieval. Interestingly, the procognitive effect of DL77 on retrieval was completely abrogated when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL) but not the centrally acting H1R antagonist PYR, indicating that histaminergic pathways through activation of H2Rs appear to be participating in neuronal circuits involved in retrieval processes. Taken together, our results show that DL77 demonstrates anticonvulsant properties in the MES-induced seizure model and improves cognitive performance through actions on different memory stages. Therefore, H3Rs may have implications for the treatment of degenerative disorders associated with impaired memory function and may represent a novel therapeutic pharmacological target to tackle cognitive problems associated with the chronic use of antiepileptic drugs. This article is part of the Special Issue entitled 'Histamine Receptors'.


Subject(s)
Anticonvulsants/pharmacology , Histamine H3 Antagonists/pharmacology , Nootropic Agents/pharmacology , Phenyl Ethers/pharmacology , Piperidines/pharmacology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Benzothiazoles/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Epilepsy/drug therapy , Epilepsy/psychology , Histamine Agonists/pharmacology , Histamine H2 Antagonists/pharmacology , Male , Memory/drug effects , Memory/physiology , Methylhistamines/pharmacology , Phenoxypropanolamines/pharmacology , Phenytoin/pharmacology , Random Allocation , Rats, Wistar , Receptors, Histamine H3/metabolism
8.
Behav Brain Res ; 297: 155-64, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26467607

ABSTRACT

Both the histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in the regulation of release and metabolism of acetylcholine and several other central neurotransmitters. Therefore, dual-active H3R antagonists and AChE inhibitors (AChEIs) have shown in several studies to hold promise to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting H3R antagonist and AChEI 7-(3-(piperidin-1-yl)propoxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline (UW-MD-71) with excellent selectivity profiles over both the three other HRs as well as the AChE's isoenzyme butyrylcholinesterase (BChE) shows high and balanced in vitro affinities at both H3R and AChE with IC50 of 33.9nM and hH3R antagonism with Ki of 76.2nM, respectively. In the present study, the effects of UW-MD-71 (1.25-5mg/kg, i.p.) on acquisition, consolidation, and retrieval in a one-trial inhibitory avoidance task in male rats were investigated applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. Furthermore, the effects of UW-MD-71 on memory deficits induced by the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were tested. Our results indicate that administration of UW-MD-71 before the test session dose-dependently increased performance and enhanced procognitive effect on retrieval. However neither pre- nor post-training acute systemic administration of UW-MD-71 facilitated acquisition or consolidation. More importantly, UW-MD-71 (2.5mg/kg, i.p.) ameliorated the DIZ-induced amnesic effects. Furthermore, the procognitive activity of UW-MD-71 in retrieval was completely reversed and partly abrogated in DIZ-induced amnesia when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL), but not with the CNS penetrant H1R antagonist pyrilamine (PYR). These results demonstrate the procognitive effects of UW-MD-71 in two in vivo memory models, and are to our knowledge the first demonstration in vivo that a potent dual-acting H3R antagonist and AChEI is effective in improving retrieval processes in the one-trial inhibitory avoidance task and provide evidence to such compounds to treat cognitive disorders.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Histamine H3 Antagonists/pharmacology , Memory Disorders/drug therapy , Memory/drug effects , Nootropic Agents/pharmacology , Pyrroles/pharmacology , Quinazolines/pharmacology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Benzothiazoles/pharmacology , Disease Models, Animal , Dizocilpine Maleate , Donepezil , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Indans/pharmacology , Male , Memory/physiology , Memory Disorders/metabolism , Phenoxypropanolamines/pharmacology , Piperidines/pharmacology , Pyrilamine/pharmacology , Random Allocation , Rats, Wistar , Receptors, Histamine H3/metabolism
9.
Article in English | MEDLINE | ID: mdl-26664449

ABSTRACT

The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ(9)-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL