Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Plant Foods Hum Nutr ; 77(3): 455-459, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35922685

ABSTRACT

Coriandrum sativum L. (coriander), which is an annual herb of the Apiaceae family, has been traditionally used as a remedy. Here we tested whether heated extract of coriander leaf protects nigral dopaminergic neurodegeneration after exposure to 6-hydroxydopamine (6-OHDA). After injection of 6-OHDA into the rat substantia nigra pars compacta (SNpc), dopaminergic degeneration, which was determined by tyrosine hydroxylase immunostaining, was rescued by co-injection of CaEDTA, an extracellular Zn2+ chelator, suggesting that extracellular Zn2+ influx is involved in neurodegeneration. Both intracellular Zn2+ dysregulation determined by ZnAF-2 fluorescence and dopaminergic degeneration in the SNpc induced by 6-OHDA were rescued by co-injection of 0.25% coriander extract, which also reduced reactive oxygen species (ROS) production in the SNpc determined by aminophenyl fluorescein fluorescence. The present study suggests that coriander leaf extract protects nigral dopaminergic neurodegeneration induced by intracellular Zn2+ dysregulation. It is likely that the nutraceutical property of coriander leaf extract contributes to the protection via reducing ROS production.


Subject(s)
Coriandrum , Animals , Oxidopamine/pharmacology , Plant Extracts/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species
2.
Exp Anim ; 70(4): 514-521, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34193681

ABSTRACT

Ninjin-yoei-to (NYT), a Kampo medicine, has ameliorative effects on cognitive dysfunction via enhancing cholinergic neuron activity. To explore an efficacy of NYT administration for prevention and cure of Alzheimer's disease, here we examined the effect of NYT on amyloid ß1-42 (Aß1-42)-induced neurodegeneration in the dentate gyrus. A diet containing 3% NYT was administered to mice for 2 weeks and human Aß1-42 was intracerebroventricularly injected. Neurodegeneration in the dentate granule cell layer of the hippocampus, which was determined 2 weeks after the injection, was rescued by administration of the diet for 4 weeks. Aß staining (uptake) was not modified in the dentate granule cell layer by pre-administration of the diet for 2 weeks, while Aß1-42-induced increase in intracellular Zn2+ was reduced, suggesting that pre-administration of NYT prior to Aß injection is effective for reducing Aß1-42-induced Zn2+ toxicity in the dentate gyrus. As a matter of fact, Aß1-42-induced neurodegeneration in the dentate gyrus was rescued by pre-administration of NYT. Interestingly, the level of metallothioneins, intracellular Zn2+-binding proteins, which can capture Zn2+ from Zn-Aß1-42 complexes, was elevated in the dentate granule cell layer by pre-administration of NYT. The present study suggests that pre-administration of NYT prevents Aß1-42-mediated neurodegeneration in the dentate gyurs by induced synthesis of metallothioneins, which reduces intracellular Zn2+ toxicity induced by Aß1-42.


Subject(s)
Amyloid beta-Peptides/pharmacology , Cognitive Dysfunction/drug therapy , Dentate Gyrus/physiopathology , Medicine, Kampo , Panax/chemistry , Protective Agents/pharmacology , Animals , Dentate Gyrus/drug effects , Male , Mice
3.
Mol Neurobiol ; 58(8): 3603-3613, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33770339

ABSTRACT

Dehydroeffusol, a phenanthrene isolated from Juncus effusus, is a Chinese medicine. To explore an efficacy of dehydroeffusol administration for prevention and cure of Alzheimer's disease, here we examined the effect of dehydroeffusol on amyloid ß1-42 (Aß1-42)-mediated hippocampal neurodegeneration. Dehydroeffusol (15 mg/kg body weight) was orally administered to mice once a day for 6 days and then human Aß1-42 was injected intracerebroventricularly followed by oral administration for 12 days. Neurodegeneration in the dentate granule cell layer, which was determined 2 weeks after Aß1-42 injection, was rescued by dehydroeffusol administration. Aß staining (uptake) was not reduced in the dentate granule cell layer by pre-administration of dehydroeffusol for 6 days, while increase in intracellular Zn2+ induced with Aß1-42 was reduced, suggesting that pre-administration of dehydroeffusol prior to Aß1-42 injection is effective for Aß1-42-mediated neurodegeneration that was linked with intracellular Zn2+ toxicity. As a matter of fact, pre-administration of dehydroeffusol rescued Aß1-42-mediated neurodegeneration. Interestingly, pre-administration of dehydroeffusol increased synthesis of metallothioneins, intracellular Zn2+-binding proteins, in the dentate granule cell layer, which can capture Zn2+ from Zn-Aß1-42 complexes. The present study indicates that pre-administration of dehydroeffusol protects Aß1-42-mediated neurodegeneration in the hippocampus by reducing intracellular Zn2+ toxicity, which is linked with induced synthesis of metallothioneins. Dehydroeffusol, a novel inducer of metallothioneins, may protect Aß1-42-induced pathogenesis in Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/toxicity , Hippocampus/drug effects , Intracellular Fluid/drug effects , Neurodegenerative Diseases/prevention & control , Peptide Fragments/toxicity , Phenanthrenes/therapeutic use , Zinc/toxicity , Amyloid beta-Peptides/administration & dosage , Animals , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Hippocampus/metabolism , Humans , Injections, Intraventricular , Intracellular Fluid/metabolism , Male , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Peptide Fragments/administration & dosage , Phenanthrenes/isolation & purification , Phenanthrenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL