Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Genes (Basel) ; 13(9)2022 09 19.
Article in English | MEDLINE | ID: mdl-36140845

ABSTRACT

Commercial interest in the culinary herb, Eryngium foetidum L., has increased worldwide due to its typical pungency, similar to coriander or cilantro, with immense pharmaceutical components. The molecular delimitation and taxonomic classification of this lesser-known medicinal plant are restricted to conventional phenotyping and DNA-based marker evaluation, which hinders accurate identification, genetic conservation, and safe utilization. This study focused on species discrimination using DNA sequencing with chloroplast-plastid genes (matK, Kim matK, and rbcL) and the nuclear ITS2 gene in two Eryngium genotypes collected from the east coast region of India. The results revealed that matK discriminated between two genotypes, however, Kim matK, rbcL, and ITS2 identified these genotypes as E. foetidum. The ribosomal nuclear ITS2 region exhibited significant inter- and intra-specific divergence, depicted in the DNA barcodes and the secondary structures derived based on the minimum free energy. Although the efficiency of matK genes is better in species discrimination, ITS2 demonstrated polyphyletic phylogeny, and could be used as a reliable marker for genetic divergence studies understanding the mechanisms of RNA molecules. The results of this study provide insights into the scientific basis of species identification, genetic conservation, and safe utilization of this important medicinal plant species.


Subject(s)
Eryngium , Plants, Medicinal , DNA Barcoding, Taxonomic/methods , DNA, Plant/chemistry , DNA, Plant/genetics , Genetic Markers/genetics , Genotype , Pharmaceutical Preparations , Phylogeny , Plants, Medicinal/genetics , RNA
2.
J Food Sci Technol ; 59(6): 2351-2360, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35602429

ABSTRACT

Nutrition-rich extruded snacks were developed from a mixture of cornflour, Bengal gram flour fortified by tree bean (TB) powder (0, 5, and 10%) using a twin-screw extruder. The nutritional, antioxidant, and amino acid profile and structural, functional, and sensory properties of the ready-to-eat (RTE) extruded snacks were evaluated. Ash, protein, and fiber content in TB-fortified extrudates were increased, whereas nitrogen-free extract was decreased. Total phenolics (2.34 mg g-1 FW), ascorbate (2.23 mg g-1 FW), total flavonoids (0.16 mg g-1 FW), and reduced glutathione (8.53 µM g-1 FW) were higher in the extrudates with 10% TB powder. Similarly, RTE extruded snacks fortified by 10% TB exhibited higher DPPH, FRAP, ABTS, hydroxyl radical activities, reducing power, and essential amino acids, such as lysine, leucine, isoleucine, cysteine, threonine, tyrosine, and methionine derived by HPLC. Extrudates fortified by 5% TB powder exhibited better microstructure through scanning electron microscopy. However, 10% TB powder possessed higher physicochemical properties and overall sensory attributes. This study reveals the tremendous industrial potential of nutrient-rich RTE extruded snacks fortified by underutilized TB (10%). Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05251-w.

3.
J Ethnobiol Ethnomed ; 17(1): 50, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34389024

ABSTRACT

BACKGROUND: Traditional plant protection strategies have an integral part of food production system in North Eastern state Tripura, India, which has bestowed with rich heritage and biodiversity. However, there is no comprehensive report on the indigenous plant protection practices (IPPPs) specific to insect and vertebrate pest management, being followed by the inhabitants of the region for centuries. The present study was conducted to investigate, collect, and document the vulnerable IPPP practices followed by the native people from far flung locations of the Tripura. METHODS: The study aimed to document the IPPP following semi-structured questionnaires, participatory interaction, and direct observations with a total of 200 informants. We have calculated the relative frequencies of citation (RFC) for IPPP and estimated principal component analysis to link the status of IPPP with socio-demographic factors of the informants. The relationship between the field of IPPP used and different covariates (age, education, occupation, gender, location, and house type) was assessed using the Kruskal-Wallis test and Chi-square test. The relationship between adoption level and the respondents' characteristics was analyzed using count regression analysis. RESULTS: The study found that the status of the IPPP has increased for mitigating pest issues. A total of 39 indigenous practices were recorded specifically to pest management from the ethnic people of Tripura, India. People acquired pretty knowledge about IPPP, and these were inherited from ancestors. The respondents in the study developed notable innovations for the management of many pest issues using locally available resources that warrant cost-effective and eco-friendly. Seed drying before storage to protect grain commodities was the most cited IPPP with a frequency of citation 0.675. In the field of IPPP used, the people primarily practiced agriculture + horticulture + storage category. An important implication from the study is the identification of two IPPP strategies in this region for the first time. Furthermore, the recorded IPPP used field was significantly associated with age, education, occupation, gender, locality, and house type. Likewise, the respondents' socio-demographic variables were coupled considerably with the adoption of specific IPPP. CONCLUSION: The reported IPPP for alleviating pest problems reflects the wisdom and generosity of the ethnic growers of Tripura, India. The study suggests the IPPP has strong potential in an integrated pest management approach passed down from generation to generation. The vulnerable practices largely remained unexplored due to inadequate scientific scrutiny and authenticity, yet in danger of being lost if not documented systematically. This study provides the first step toward accessing the valuable technology of untapped Tripura in IPPP and could be viable in paving action paradigm for their preservation, diffusion, and application with advanced pest management options.


Subject(s)
Conservation of Natural Resources , Medicine, Traditional , Plants, Medicinal , Humans , India , Surveys and Questionnaires
4.
PLoS One ; 16(2): e0246971, 2021.
Article in English | MEDLINE | ID: mdl-33606806

ABSTRACT

A protocol for high-frequency direct organogenesis from root explants of Kachai lemon (Citrus jambhiri Lush.) was developed. Full-length roots (~3 cm) were isolated from the in vitro grown seedlings and cultured on Murashige and Skoog basal medium supplemented with Nitsch vitamin (MSN) with different concentrations of cytokinin [6-benzylaminopurine, (BAP)] and gibberellic acid (GA3). The frequency of multiple shoot proliferation was very high, with an average of 34.3 shoots per root explant when inoculated on the MSN medium supplemented with BAP (1.0 mg L-1) and GA3 (1.0 mg L-1). Optimal rooting was induced in the plantlets under half strength MSN medium supplemented with indole-3-acetic acid (IAA, 0.5-1.0 mg L-1). IAA induced better root structure than 1-naphthaleneacetic acid (NAA), which was evident from the scanning electron microscopy (SEM). The expressions of growth regulating factor genes (GRF1 and GRF5) and GA3 signaling genes (GA2OX1 and KO1) were elevated in the regenerants obtained from MSN+BAP (1.0 mg L-1)+GA3 (1.0 mg L-1). The expressions of auxin regulating genes were high in roots obtained in ½ MSN+IAA 1.0 mg L-1. Furthermore, indexing of the regenerants confirmed that there was no amplicons detected for Huanglongbing bacterium and Citrus tristeza virus. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers detected no polymorphic bands amongst the regenerated plants. This is the first report that describes direct organogenesis from the root explant of Citrus jambhiri Lush. The high-frequency direct regeneration protocol in the present study provides an enormous significance in Citrus organogenesis, its commercial cultivation and genetic conservation.


Subject(s)
Citrus/growth & development , Citrus/genetics , Gene Expression Regulation, Plant , Organogenesis, Plant/genetics , Plant Shoots/growth & development , Plant Viruses/physiology , Citrus/virology , Plant Shoots/genetics , Plant Shoots/virology , Random Amplified Polymorphic DNA Technique
5.
Sci Rep ; 10(1): 5404, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214180

ABSTRACT

Influence of polyethylene glycol (PEG) mediated osmotic stress on reactive oxygen species (ROS) scavenging machinery of Chinese potato (Solenostemon rotundifolius (Poir.) J. K. Morton) was investigated. Five genotypes of Chinese potato were raised in Murashige and Skoog (MS) basal medium containing 6-benzylaminopurine (BAP, 1 mg L-1) along with various concentrations of PEG-6000 mediated stress conditions (0, -0.2 and -0.5 MPa) and evaluated for osmotic stress tolerance in vitro. The medium containing PEG-6000 had a detrimental effect on plantlet growth and development while compared with the control. Accumulation of H2O2 was lower in Sreedhara and Subala and higher in Nidhi under PEG stress, which was evident by in situ detection in leaves. Lipid peroxidation product such as malondialdehyde (MDA) content was increased due to PEG stress which was more in susceptible genotype than that in tolerant ones. An enhanced ROS-scavenging antioxidant enzyme was observed under stress with respect to the control. The enzymes of ascorbate-glutathione cycle showed an important role in scavenging ROS. The imposition of PEG stress also increased the non-enzymatic antioxidants viz., the ascorbate and reduced glutathione content which was prominent in tolerant genotypes in comparison to susceptible. The present study indicated that, Sreedhara and Subala showed more tolerance to osmotic stress with better ROS scavenging machineries which would be the lines of interest for augmenting future breeding strategies in this climate resilient minor tuber crop.


Subject(s)
Osmosis/drug effects , Osmotic Pressure/drug effects , Reactive Oxygen Species/metabolism , Solanum tuberosum/drug effects , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Ascorbic Acid/metabolism , Benzyl Compounds/pharmacology , Catalase/metabolism , Chlorophyll/metabolism , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Polyethylene Glycols/pharmacology , Purines/pharmacology , Solanum tuberosum/metabolism , Solanum tuberosum/physiology , Superoxide Dismutase/metabolism
6.
J Ethnopharmacol ; 154(1): 17-25, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24732111

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Hydnocarpus (Flacourtiaceae) includes forty species that are spread across the globe. In the Indian System of Medicine, Hydnocarpus pentandrus (Buch.-Ham.) Oken. is primarily used for treating leprosy and other skin disorders. It is known as "Chaulmoogra" and is also used to treat other indications including constipation, inflammation, blood disorders, and worm infestations. Various species of Hydnocarpus are also used in traditional medicine in China, Thailand, Malaysia, and Myanmar for several skin disorders. To assess the therapeutic potential of species from the Hydnocarpus genus and to determine future avenues for research. METHODS: All relevant scientific literature published up to the end of December 2013 was retrieved via a library and electronic search (SciFinder, PubMed, ScienceDirect, and Google Scholar). Manual searches of traditional books like to ancient classics, including Vaidya Yoga Ratnavali, Siddha Materia Medica, and contemporary references including The Ayurvedic Pharmacopoeia of India and The Ayurveda Formulary, were also performed. RESULTS: Seed oil from species of the Hydnocarpus genus is used for medicinal purposes, predominantly for various skin disorders. This oil is reported to contain a characteristic class of compounds known as cyclopentenyl fatty acids. Furthermore, seeds of this genus are reported to contain triglycerides of fatty acids, sterols, flavonoids, and flavonolignans. Hydnocarpin, a flavonolignan, is reported to potentiate antimicrobial and anticancer activity. The extracts and compounds isolated from this plant show a wide spectrum of pharmacological properties, including antibacterial, antileprotic, antitubercular, antipsoriatic, antirheumatic, hypolipidemic, antidiabetic, anticancer, anti-inflammatory, and antioxidant activities. The antileprotic activity is postulated to be due to the cyclopentenyl fatty acids present in the seed oil. CONCLUSION: Flavonolignans have an interesting chemical motif, and hydnocarpin and its congeners should be investigated for their activities and the mechanism underlying these activities. Multi-drug-resistant microbes are on the increase, and the possible inhibitory effect of these compounds when used with current antimicrobials should also be evaluated. Furthermore, unique cyclopentenyl fatty acids should also be investigated to understand the exact mechanism of action underlying antileprotic activity. Additional in depth phytochemical investigations of seed oil and extracts are required to tap the true potential of species from the Hydnocarpus genus.


Subject(s)
Medicine, Ayurvedic , Salicaceae , Animals , Humans , Leprosy/drug therapy , Phytochemicals/analysis , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Salicaceae/chemistry
7.
Chem Biodivers ; 6(5): 784-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19479845

ABSTRACT

Biodiversity is a major resource for identification of new molecules with specific therapeutic activities. To identify such an active resource, high throughput screening (HTS) of the extracts prepared from such diversity are examined on specific functional assays. Based on such HTS studies and bioactivity-based fractionation, we have isolated ergoflavin, a pigment from an endophytic fungus, growing on the leaves of an Indian medicinal plant Mimosops elengi (bakul). We report here the isolation, structure elucidation, and biological properties of this compound, which showed good anti-inflammatory and anticancer activities.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Ascomycota/chemistry , Chromones/pharmacology , Lactones/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Ascomycota/growth & development , Ascomycota/metabolism , Cell Line, Tumor , Chromones/chemistry , Chromones/isolation & purification , Drug Screening Assays, Antitumor , Humans , Interleukin-6/metabolism , Lactones/chemistry , Lactones/isolation & purification , Mimusops/microbiology , Plant Leaves/microbiology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL