Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Mol Biol Rep ; 49(12): 11983-11996, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36271979

ABSTRACT

BACKGROUND: Plant organelles are highly motile where their movement is significant for fast distribution of material around the cell, facilitation of the plant's ability to respond to abiotic and biotic signals, and for appropriate growth. Abiotic and biotic stresses are among the major factors limiting crop yields, and biological membranes are the first target of these stresses. Plants utilize adaptive mechanisms namely myosin to repair injured membranes following exposure to abiotic and biotic stresses. OBJECTIVE: Due to the economic importance and cultivation of potato grown under abiotic and biotic stress prone areas, identification and characterization of myosin family members in potato were performed in the present research. METHODS: To identify the myosin genes in potato, we performed genome-wide analysis of myosin genes in the S. tuberosum genome using the phytozome. All putative sequences were approved with the interproscan. Bioinformatics analysis was conducted using phylogenetic tree, gene structure, cis-regulatory elements, protein-protein interaction, and gene expression. RESULT: The majority of the cell machinery contain actin cytoskeleton and myosins, where motility of organelles are dependent on them. Homology-based analysis was applied to determine seven myosin genes in the potato genome. The members of myosin could be categorized into two groups (XI and VIII). Some of myosin proteins were sub-cellularly located in the nucleus containing 71.5% of myosin proteins and other myosin proteins were localized in the mitochondria, plasma-membrane, and cytoplasm. Determination of co-expressed network, promoter analysis, and gene structure were also performed and gene expression pattern of each gene was surveyed. Number of introns in the gene family members varied from 1 to 39. Gene expression analysis demonstrated that StMyoXI-B and StMyoVIII-2 had the highest transcripts, induced by biotic and abiotic stresses in all three tissues of stem, root, and leaves, respectively. Overall, different cis-elements including abiotic and biotic responsive, hormonal responsive, light responsive, defense responsive elements were found in the myosin promoter sequences. Among the cis-elements, the MYB, G-box, ABRE, JA, and SA contributed the most in the plant growth and development, and in response to abiotic and biotic stress conditions. CONCLUSION: Our results showed that myosin genes can be utilized in breeding programs and genetic engineering of plants with the aim of increasing tolerance to abiotic and biotic stresses, especially to viral stresses such as PVY, PVX, PVA, PVS, high light, drought, cold and heat.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Droughts , Phylogeny , Plant Proteins/metabolism , Hot Temperature , Plant Breeding , Stress, Physiological/genetics , Plants/metabolism , Myosins/genetics , Myosins/metabolism , Gene Expression Regulation, Plant/genetics
2.
Funct Integr Genomics ; 22(6): 1377-1390, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36048308

ABSTRACT

GF14 proteins are a family of conserved proteins involved in many cellular processes including transport, growth, metabolism, and stress response. However, only few reports are available regarding the 14-3-3 genes in potato. In this study, twelve 14-3-3 genes were detected in the potato genome. Based on their phylogenetic relationships, the StGF14 family members were categorized into two classes. Gene expression analysis demonstrated that StGF14h, StGF14a, and StGF14k had the highest gene expression, induced by abiotic and biotic stresses in all three tissues. The number of exons in 14-3-3 genes ranged from four to seven and most of these genes in the same subfamily had similar exon-intron patterns. The results of our study showed that the conserved motifs are similar in most of the proteins in each group. The intron-exon patterns and the composition of conserved motifs validated the 14-3-3 gene phylogenetic classification. According to the genome distribution results, 14-3-3 genes were located unevenly on the 12 Solanum tuberosum chromosomes. We find out 97 orthologous gene pairs between potato and Arabidopsis as well as 15 paralogous genes among potato genomes. Our results showed that GF-14 genes have an effective role in functional and molecular mechanisms in response to environmental stresses.


Subject(s)
Solanum tuberosum , Gene Expression Regulation, Plant , Phylogeny , Gene Expression Profiling , Stress, Physiological/genetics , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Steroids ; 172: 108862, 2021 08.
Article in English | MEDLINE | ID: mdl-34010709

ABSTRACT

Osteoporosis is a common disease in post-menopausal women. The increased risk of breast cancer and malignancy with hormone replacement, hampers its wide-usage. Phytoestrogens are known to have selective estrogen receptor modulator activity. The present study aims to determine how ferutinin affects unrestricted human Somatic Stem Cells (USSCs) osteogenic differentiation. The effect of ferutinin on USSCs proliferation was assessed by MTT assay while osteogenesis was evaluated using Alkaline Phosphatase Activity (ALP), calcium deposition and Alizarin Red Staining. Quantitative real-time PCR was applied to examine the expression of bone specific genes such as osteocalcin, Runx2, and BMP-2. Ferutinin (5-15 µg/mL) could positively impact on the proliferation of cells in a dose-dependent manner. Also, ALP enzyme activity and calcium deposition were enhanced in the presence of ferutinin. Based on real-time PCR results, ferutinin could increase the expression of bone marker genes. The pattern of ferutinin effect on gene expression is similar to standard synthetic estrogen, 17-ß-estradiol. In the presence of the estrogen activity inhibitor (ICI), the effect of ferutinin on ALP and gene level was diminished. In conclusion, ferutinin may be considered as a potential candidate for the stem cell therapy in osteoporosis.


Subject(s)
Adult Stem Cells/cytology , Benzoates/pharmacology , Cell Differentiation , Cycloheptanes/pharmacology , Fetal Blood/cytology , Gene Expression Regulation/drug effects , Osteogenesis , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology , Adult Stem Cells/drug effects , Adult Stem Cells/metabolism , Bridged Bicyclo Compounds/pharmacology , Cell Proliferation , Cells, Cultured , Ferula/chemistry , Fetal Blood/drug effects , Fetal Blood/metabolism , Gene Expression Profiling , Humans
4.
IET Nanobiotechnol ; 13(2): 183-188, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31051449

ABSTRACT

Recently the use of medicinal plants potential in the production of nanoparticles has received serious attention. Here, the main component of Camellia sinensis L. (green tea) extract was detected by spectroscopy and the optimal conditions were determined for their performance in green synthesis of silver nanoparticles at room temperature. Epigallocatechin gallate was identified as the dominant component in the extract as determined by spectroscopy, and it was established that its oxidation was a function of the solution pH. Transmission electron microscopy, dynamic light scattering, and visible absorption spectroscopy (UV-Vis) confirmed the reduction in silver ions to silver nanoparticles (Ag NPs). Controlling over Ag NPs shape and narrow size distribution was achieved with 10 ml green tea leaf extract solution and in different reaction pH. Spherical colloidal Ag NPs with well-defined hydrodynamic diameters (with average hydrodynamic size of 27.9-50.2 nm) were produced. Silver nitrate concentrations used in this study were lower than that of reported in similar works, and synthesis efficiency was also higher. Nanoparticles were perfectly spherical and their uniformity, compared to similar studies, was much higher. These NPs showed higher degree of stability and were aqueously stable for >10 months in dark glasses at 4°C.


Subject(s)
Camellia sinensis/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Tea/chemistry , Antioxidants/chemistry , Catechin/chemistry , Dynamic Light Scattering , Particle Size , Spectroscopy, Fourier Transform Infrared
5.
Avicenna J Phytomed ; 3(2): 135-42, 2013.
Article in English | MEDLINE | ID: mdl-25050267

ABSTRACT

OBJECTIVE: Osteoporosis or silent disease is a major bone disorder in elderly women in current century. Estrogen has an important role in osteogenesis and prevention of bone fractures. Hormone replacement therapy (HRT) is usually accompanied by such effects as breast and ovary cancers. Thus, there is an increasing demand for replacement with plant phytoestrogens. This study is focused on determining the effects of Foeniculum vulgare extract on proliferation and osteogenesis progress in human mesenchymal stem cells. MATERIALS AND METHODS: Human mesenchymal stem cells were isolated and treated with different amount of plant extracts (0.5 to 100 µg/ml). Extract cytotoxicity was measured using MTT assay. The alkaline phosphatase enzyme activity was measured to evaluate the differentiation progress. RESULTS: RESULTS of MTT assay and alkaline phosphatase activity showed that Foeniculum vulgare extract, at range of 5 to 50 µg/ml, may positively affect cell proliferation and mineralization. The most proliferation and enzyme activity were seen with dose of 5 µg/ml. CONCLUSIONS: Foeniculum vulgare has been used in Iranian folk medicine for many years. Our in vitro study showed that Foeniculum vulgare extract has osteoprotective effects.

SELECTION OF CITATIONS
SEARCH DETAIL