Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Sci Rep ; 12(1): 19617, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36380061

ABSTRACT

In the present work, the composite cross-linked were used to consolidate the dyed paper manuscripts. Nanocomposites of mesoporous silica nanoparticle (MPSNP)/polyvinyl alcohol (PVA) and cellulose nanofiber (CNF)/PVA, which have never been used before, have been evaluated for the consolidation process of the dyed paper manuscripts with madder extract. Three concentrations 1%, 3%, and 5% have been prepared. Analysis and investigation methods like scanning electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering analysis (DLS), X-Ray diffraction Analysis (XRD), atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and total color difference (ΔE) by spectrophotometer have been used in order to characterize the prepared nano-sized composites and evaluate the treated dyed paper samples before and after the aging process. The results of surface morphology by SEM revealed the effectiveness of MPSNP/PVA core-shell nanocomposite at 5% in the consolidation process, where the improvement of properties of the aged dyed paper samples. The fibers of the treated paper became strong and appeared clearly. The result of ΔE measurements showed that the treated sample with MPSNP/PVA nanocomposite at 5% gave the lowest ΔE (5.22), while, the treated sample with CNF/PVA nanocomposite at 5% gave the highest ΔE value (11.66). Mechanical measurements (tensile strength and elongation) revealed the efficiency of MPSNP/PVA nanocomposite at 5% in the treatment of the aged dyed paper samples. The treated sample with the mentioned material gave tensile strength and elongation values of 84.8 N/nm2 and 1.736%, respectively. In contrast, the treated sample with CNF/PVA nanocomposite at 1% gave the lowest tensile strength and elongation values 38.2 N/nm2, and 1.166%, respectively. FTIR analysis revealed an increase was noticed in the CH2 stretching band (refers to the crystallinity of cellulose), where the intensity of the treated sample with MPSNP/PVA nanocomposite was at a 5% increase compared to the control sample. The FTIR results supported the results of mechanical measurements. The intensity of the CH2 stretching band, which refers to the crystallinity index of cellulose, was increased with the use of MPSNP/PVA nanocomposite at 3% and 5%, which explains the improvement in mechanical properties. This may be due to the nano-mineral particles, which improve the mechanical properties. Additionally, they reduce the effect of accelerated thermal aging on the cellulosic fibers and give them stability. The detailed analysis of analytical methods used for evaluation revealed the novelty of MPSNP/PVA nanocomposite, especially at 5%. It has a potential role in strengthening and improving different properties of the dyed paper manuscripts with madder extract.


Subject(s)
Nanocomposites , Polyvinyl Alcohol , Polyvinyl Alcohol/chemistry , Cellulose/chemistry , Silicon Dioxide/chemistry , Coloring Agents , Nanocomposites/chemistry , Plant Extracts
2.
Sci Rep ; 12(1): 16468, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36183011

ABSTRACT

One of the tomato's acutely devastating diseases is Alternaria leaf spot, lowering worldwide tomato production. In this study, one fungal isolate was isolated from tomatoes and was assigned to Alternaria alternata TAA-05 upon morphological and molecular analysis of the ITS region and 18SrRNA, endoPG, Alt a1, and gapdh genes. Also, Urtica dioica and Dodonaea viscosa methanol leaf extracts (MLEs) were utilized as antifungal agents in vitro and compared to Ridomil, a reference chemical fungicide. The in vitro antifungal activity results revealed that Ridomil (2000 µg/mL) showed the highest fungal growth inhibition (FGI) against A. alternata (96.29%). Moderate activity was found against A. alternata by D. viscosa and U. dioica MLEs (2000 µg/mL), with an FGI value of 56.67 and 54.81%, respectively. The abundance of flavonoid and phenolic components were identified by HPLC analysis in the two plant extracts. The flavonoid compounds, including hesperidin, quercetin, and rutin were identified using HPLC in D. viscosa MLE with concentrations of 11.56, 10.04, and 5.14 µg/mL of extract and in U. dioica MLE with concentrations of 12.45, 9.21, and 5.23 µg/mL, respectively. α-Tocopherol and syringic acid, were also identified in D. viscosa MLE with concentrations of 26.13 and 13.69 µg/mL, and in U. dioica MLE, with values of 21.12 and 18.33 µg/mL, respectively. Finally, the bioactivity of plant extracts suggests that they play a crucial role as antifungal agents against A. alternata. Some phenolic chemicals, including coumaric acid, caffeic acid, ferulic acid, and α-tocopherol, have shown that they may be utilized as environmentally friendly fungicidal compounds.


Subject(s)
Fungicides, Industrial , Hesperidin , Sapindaceae , Solanum lycopersicum , Urtica dioica , Alternaria , Antifungal Agents/pharmacology , Coumaric Acids , Methanol , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Quercetin , Rutin , Urtica dioica/chemistry , alpha-Tocopherol
3.
Front Plant Sci ; 13: 966929, 2022.
Article in English | MEDLINE | ID: mdl-36003819

ABSTRACT

Extensive use of chemical control agents and fungicides typically leads to numerous risks to human health and the environment. Using plant extracts as natural substances represents a dual key for the environment and sustainable food production, as it reduces the input of synthetic pesticides into the environment and/or controls plant pathogens. For the first time, a Plantago lagopus ethanolic extract has been characterized and evaluated for its protective and curative effects against Rhizoctonia solani in tomato plants. The results showed that P. lagopus extract (10 µg/ml) completely inhibited R. solani mycelial growth in vitro. At 20 days of post fungal inoculation, the results demonstrated that using P. lagopus extract (100 µg/ml) in vivo enhanced tomato plant growth by significantly increasing shoot and root parameters in protective and curative treatments. Furthermore, the protective and curative treatments significantly reduced the disease index by 18.66 and 38.66%, respectively. Induction of systemic resistance with upregulation of PR-1 and PR-2 and a significant increase in the transcriptional levels of PR-3 and CHS in all P. lagopus extract-treated tomato plants were reported compared to untreated plants. HPLC analysis showed that the most common polyphenolic components detected in P. lagopus extract were rutin (74206.3 mg/kg), naringenin (2388.74 mg/kg), quercetin (1249.13 mg/kg), and p-hydroxybenzoic acid (1035.87 mg/kg). In addition, the ellagic acid (798.47 mg/kg), vanillic acid (752.55 mg/kg), catechol (648.89 mg/kg), cinnamic acid (332.51 mg/kg), ferulic acid (296.32 mg/kg), benzoic acid (295.95 mg/kg), and chlorogenic acid (116.63 mg/kg) were also reported. Our study is the first to show that P. lagopus extract can help plants fight off R. solani fungal infection. Furthermore, the findings imply that using the P. lagopus extract as a natural biocontrol agent could be a sustainable strategy to manage plant fungal diseases.

4.
Front Plant Sci ; 13: 879545, 2022.
Article in English | MEDLINE | ID: mdl-35665186

ABSTRACT

There are many technological innovations in the field of agriculture to improve the sustainability of farmed products by reducing the chemicals used. Uses of biostimulants such as plant extracts or microorganisms are a promising process that increases plant growth and the efficient use of available soil resources. To determine the effects of some biostimulants' treatments on the photosynthetic pigments and biochemicals composition of zucchini plants, two experiments were conducted in 2019 and 2020 under greenhouse conditions. In this work, the effects of beneficial microbes (Trichoderma viride and Pseudomonas fluorescens), as well as three extracts from Eucalyptus camaldulensis leaf extract (LE), Citrus sinensis LE, and Ficus benghalensis fruit extract (FE) with potassium silicate (K2SiO3) on productivity and biochemical composition of zucchini fruits, were assessed as biostimulants. The results showed that E. camaldulensis LE (4,000 mg/L) + K2SiO3 (500 mg/L) and T. viride (106 spore/ml) + K2SiO3 (500 mg/L) gave the highest significance yield of zucchini fruits. Furthermore, the total reading response of chlorophylls and carotenoids was significantly affected by biostimulants' treatments. The combination of K2SiO3 with E. camaldulensis LE increased the DPPH scavenging activity and the total phenolic content of zucchini fruits, in both experiments. However, the spraying with K2SiO3 did not observe any effects on the total flavonoid content of zucchini fruits. Several phenolic compounds were identified via high-performance liquid chromatography (HPLC) from the methanol extracts of zucchini fruits such as syringic acid, eugenol, caffeic acid, pyrogallol, gallic acid, ascorbic acid, ferulic acid, α-tocopherol, and ellagic acid. The main elemental content (C and O) analyzed via energy-dispersive X-ray spectroscopy (EDX) of leaves was affected by the application of biostimulants. The success of this work could lead to the development of cheap and easily available safe biostimulants for enhancing the productivity and biochemical of zucchini plants.

5.
Sci Rep ; 12(1): 6363, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35430590

ABSTRACT

The current study was performed on 8 years old "Succary" pomegranate cultivar (Punica granatum L.) during the 2019 and 2020 seasons. One hundred pomegranate trees were chosen and sprayed three times at the beginning of flowering, full bloom, and 1 month later with the following treatments: water as control, 0.025, 0.05 and 0.1 mg/L Se; 5 mL/L, 7.5 and 10 mL/L Ag NPs, and 0.5, 1 and 2 mg/L K2Si2O5. The results showed that spraying of SE, Ag NPs, and K2Si2O5 ameliorated the shoot length, diameter, leaf chlorophyll content, set of fruiting percentage, and fruit yield per tree and hectare compared to control through studying seasons. Moreover, they improved the fruit weight, length, and diameter, as well as total soluble solids, total, reduced, and non-reduced sugars percent, while they lessened the juice acidity percentage compared to control. The most obvious results were noticed with Se at 0.1 mg/L, Ag NPs at 10 mL/L, and K2Si2O5 and K2Si2O5 in both experimental seasons over the other applied treatments. By HPLC analysis, peel extracts showed the presence of several bioactive compounds of catechol, syringic acid, p-coumaric acid, benzoic acid, caffeic acid, pyrogallol, gallic acid, ferulic acid, salicylic acid, cinnamic acid, and ellagic acid. The extracts applied to Melia azedarach wood showed promising antifungal activity against Rhizoctonia solani and were considered wood-biofingicides.


Subject(s)
Fungicides, Industrial , Pomegranate , Selenium , Droughts , Fruit , Fungicides, Industrial/pharmacology , Plant Extracts/pharmacology , Potassium , Silicates/pharmacology , Trees
6.
Sci Rep ; 11(1): 19027, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561493

ABSTRACT

In the present study, and for the waste valorization, Moringa oleifera seeds-removed ripened pods (SRRP) were used for papersheet production and for the extraction of bioactive compounds. Fibers were characterized by SEM-EDX patterns, while the phytoconstituents in ethanol extract was analyzed by HPLC. The inhibition percentage of fungal mycelial growth (IFMG) of the treated Melia azedarach wood with M. oleifera SRRP extract at the concentrations of 10,000, 20,000, and 30,000 µg/mL against the growth of Rhizoctonia solani and Fusarium culmorum was calculated and compared with fluconazole (25 µg). The produced papersheet was treated with the ethanol extract (4000, 2000, and 1000 µg/mL) and assayed for its antibacterial activity against Agrobacterium tumefaciens, Erwinia amylovora, and Pectobacterium atrosepticum by measuring the inhibition zones and minimum inhibitory concentrations (MICs). According to chemical analysis of M. oleifera SRRP, benzene:alcohol extractives, holocellulose, lignin, and ash contents were 7.56, 64.94, 25.66 and 1.53%, respectively, while for the produced unbleached pulp, the screen pulp yield and the Kappa number were 39% and 25, respectively. The produced papersheet showed tensile index, tear index, burst index, and double fold number values of 58.8 N m/g, 3.38 mN m2/g, 3.86 kPa m2/g, and 10.66, respectively. SEM examination showed that the average fiber diameter was 16.39 µm, and the mass average of for elemental composition of C and O by EDX were, 44.21%, and 55.79%, respectively. The main phytoconstituents in the extract (mg/100 g extract) by HPLC were vanillic acid (5053.49), benzoic acid (262.98), naringenin (133.02), chlorogenic acid (66.16), and myricetin (56.27). After 14 days of incubation, M. oleifera SRRP extract-wood treated showed good IFMG against R. solani (36.88%) and F. culmorum (51.66%) compared to fluconazole, where it observed 42.96% and 53.70%, respectively. Moderate to significant antibacterial activity was found, where the minimum inhibitory concentration (MIC) values were 500, 650, and 250 µg/mL against the growth of A. tumefaciens, E. amylovora, and P. atrosepticum respectively, which were lower than the positive control used (Tobramycin 10 µg/disc). In conclusion, M. oleifera SRRP showed promising properties as a raw material for pulp and paper production as well as for the extraction of bioactive compounds.


Subject(s)
Chromatography, High Pressure Liquid/methods , Liquid-Liquid Extraction/methods , Moringa oleifera/chemistry , Paper , Plant Extracts/chemistry , Plant Extracts/pharmacology , Agrobacterium tumefaciens/drug effects , Benzoic Acid , Drug Resistance, Microbial , Erwinia amylovora/drug effects , Flavanones , Fusarium/drug effects , Plant Extracts/isolation & purification , Rhizoctonia/drug effects , Seeds , Vanillic Acid
7.
Plants (Basel) ; 10(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209682

ABSTRACT

BACKGROUND: Trees are good sources of bioactive compounds as antifungal and antioxidant activities. METHODS: Management of six molecularly identified Fusarium oxysporum isolates (F. oxy 1, F. oxy 2, F. oxy 3, F. oxy 4, F. oxy 5 and F. oxy 6, under the accession numbers MW854648, MW854649, MW854650, MW854651, and MW854652, respectively) was assayed using four extracts from Conium maculatum leaves, Acacia saligna bark, Schinus terebinthifolius wood and Ficus eriobotryoides leaves. All the extracts were analyzed using HPLC-VWD for phenolic and flavonoid compounds and the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and ß-carotene-linoleic acid (BCB) bleaching assays. RESULTS: In mg/kg extract, the highest amounts of polyphenolic compounds p-hydroxy benzoic, benzoic, gallic, and rosmarinic acids, with 444.37, 342.16, 311.32 and 117.87, respectively, were observed in C. maculatum leaf extract; gallic and benzoic acids with 2551.02, 1580.32, respectively, in A. saligna bark extract; quinol, naringenin, rutin, catechol, and benzoic acid with 2530.22, 1224.904, 798.29, 732.28, and 697.73, respectively, in S. terebinthifolius wood extract; and rutin, o-coumaric acid, p-hydroxy benzoic acid, resveratrol, and rosmarinic acid with 9168.03, 2016.93, 1009.20, 1156.99, and 574.907, respectively, in F. eriobotryoides leaf extract. At the extract concentration of 1250 mg/L, the antifungal activity against the growth of F. oxysporum strains showed that A. saligna bark followed by C. maculatum leaf extracts had the highest inhibition percentage of fungal growth (IPFG%) against F. oxy 1 with 80% and 79.5%, F. oxy 2 with 86.44% and 78.9%, F. oxy 3 with 86.4% and 84.2%, F. oxy 4 with 84.2, and 82.1%, F. oxy 5 with 88.4% and 86.9%, and F. oxy 6 with 88.9, and 87.1%, respectively. For the antioxidant activity, ethanolic extract from C. maculatum leaves showed the lowest concentration that inhibited 50% of DPPH free radical (3.4 µg/mL). Additionally, the same extract observed the lowest concentration (4.5 µg/mL) that inhibited BCB bleaching. CONCLUSIONS: Extracts from A. saligna bark and C. maculatum leaves are considered potential candidates against the growth of F. oxysporum isolates-a wilt pathogen-and C. maculatum leaf as a potent antioxidant agent.

8.
Microb Pathog ; 158: 105107, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34303810

ABSTRACT

Medicinal and aromatic higher plants are sustainable resources for natural product compounds, including essential oils, phenolics, flavonoids, alkaloids, glycosides, and saponins. Extractives and essential oils as well as their bioactive compounds have many uses due to their antimicrobial, anticancer, and antioxidant properties as well as application in food preservation. These natural compounds have been reported in many works, for instance biofungicide with phenolic and flavonoid compounds being effective against mold that causes discoloration of wood. Additionally, the natural extracts from higher plants can be used to mediate the synthesis of nanoparticle materials. Therefore, in this review, we aim to promote and declare the use of natural products as environmentally eco-friendly bio-agents against certain pathogenic microbes and make recommendations to overcome the extensive uses of conventional pesticides and other preservatives.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Oils, Volatile , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Antioxidants , Plant Extracts/pharmacology
9.
Trop Anim Health Prod ; 53(2): 318, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33983523

ABSTRACT

The aim of this study was to evaluate the bioactive effect of Moringa oleifera leaves hydroalcoholic extract as a dietary feed additive on helminths load and growth performances of goats. Initially, the availability of bioactive compounds in M. oleifera hydroalcoholic extract was analysed using gas chromatography-mass spectrometry (GC-MS), which showed the presence of heneicosane (35.69%), 1,2-benzenedicarboxylic acid (22.89%), heptacosane (18.26%), pentatriacontane (4.77%), and hexadecanoic acid ethyl ester (3%) as predominant compounds in the leaves extract. The anthelmintic effect of M. oleifera extract (0 and 60 mL of extract animal-1) was evaluated against disparate nematodes using standard methodology. M. oleifera leaves extract exhibited significant (P = 0.002) anthelmintic activities against Trichuris sp. and Ostertagia sp. with reduced counts of eggs. A completely randomized experiment of 3 treatments comprised of 10 goats in each treatment was designed for the growth performance study. Treatments used in the present experiment were as follows: treatment 1 (T1), 0 mL of extract animal-1; treatment 2 (T2), 30 mL of extract animal-1; and treatment 3 (T3), 60 mL of extract animal-1. Growth performance parameters (body weight, daily weight gain, and feed intake values) of goats fed varied concentrations of M. oleifera extract were estimated as per standard protocols. The T2 and T3 groups' goats offered significant (P < 0.05) increment in body weight. Daily weight gain of the T2 and T3 groups' goats was also increased. Group T3 exhibited maximum feed intake value of 588, 678, 652, and 678 g d-1 at 0, 30, 45, and 60 days, respectively. Feed conversion efficiency was increased for T2 and T3 groups' goats versus T1. Findings of this study concluded that M. oleifera hydroalcoholic extract can be used not only as an effective anthelmintic agent against disparate nematodes but also as a prominent feed additive to improve growth performances of goats.


Subject(s)
Anthelmintics , Moringa oleifera , Animals , Anthelmintics/pharmacology , Goats , Ovum , Plant Extracts/pharmacology , Plant Leaves
10.
Sci Rep ; 11(1): 10205, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986453

ABSTRACT

The current study was performed on eight years old peach (Prunus persica L. Batsch) trees cv. Florida prince to study the influence of spraying of commercial nano fertilizer on vegetative growth, pollen grain viability, yield, and fruit quality of the "Florida prince" peach cultivar. Furthermore, extracts from the nanofertilizer treated leaves were studied for their bioactivity as insecticidal or bactericidal activities against some stored grain insects and plant bacterial pathogens. Seventy uniform peach trees were sprayed three time as follow: before flowering; during full bloom, and one month later in addition using the water as a control. Commercial silver particales (Ag NPs) at 10, 12.5, and 15 mL/L and zinc particales (Zn NPs) at 2.5, 5 and 7.5 mL/L as recommended level in a randomized complete block design in ten replicates/trees. Spraying Ag NP at 15 mL/L increased shoot diameter, leaf area, total chlorophyll, flower percentage, fruit yield and fruit physical and chemical characteristics, followed by Ag NPs at 12.5 mL/L and Zn NPs at 7.5 mL/L. Moreover, Zn and Ag NPs caused a highly significant effect on pollen viability. Different type of pollen aberrations were detected by Zn NPs treatment. The commercial Ag NPs showed a high increase in pollen viability without any aberrations. The Ag NPs significantly increased the pollen size, and the spores also increased and separated in different localities, searching about the egg for pollination and fertilization. Peach leaves extract was examined for their insecticidal activity against rice weevil (Sitophilus oryzea L.) and the lesser grain borer (Rhyzopertha dominica, Fabricius) by fumigation method. The antibacterial activity of all treatments was also performed against molecularly identified bacteria. Ag NPs treated leaves extract at concentration 3000 µg/mL were moderate sufficient to inhibit all the bacterial isolates with inhibition zone (IZ) ranged 6-8.67 mm with high efficiency of acetone extracts from leaves treated with Ag NPs compared with Zn NPs. Also, S. oryzae was more susceptible to acetone extracts from leaves treated with both nanomaterials than R. dominica.


Subject(s)
Prunus persica/drug effects , Prunus persica/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Chlorophyll/metabolism , Fertilizers , Florida , Insecticides/pharmacology , Metal Nanoparticles , Plant Extracts/metabolism , Plant Leaves/drug effects , Pollen/drug effects , Pollination/drug effects , Silver , Trees/drug effects , Zinc
11.
Insects ; 11(11)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158029

ABSTRACT

A trend towards environmentally friendly chemicals for use in termite management has been occurring globally. This study examined three naturally occurring plant extracts from Lavandula latifolia (Spike lavender), Origanum vulgare (Marjorum), and Syzygium aromaticum (Clove) against the termite Microcerotermes eugnathus. Plant extract results were compared to two commercially used termite pesticides, the bio-insecticide, Bacillus thuringiensis var. kurstaki (Protecto 9.4% WP) and Dursban (Chlorpyrifos 48%). Gas chromatography-mass spectrometry (GC-MS) analysis was used to identify the main compounds in the three plant extracts. The main compounds in Lavandula Latifolia were linalool (21.49%), lavandulol (12.77%), ß-terpinyl acetate (10.49%), and camphor (9.30%). Origanum vulgare extract contained thymol (14.64%), m-cymene (10.63%), linalool (6.75%), and terpinen-4-ol (6.92%) as main compounds. Syzygium aromaticum contained eugenol (99.16%) as the most abundant identified compound. The extract of O. vulgare caused the highest termite death rate, with an LC50 of 770.67 mg/L. Exposure to lavender extract showed a high death rate with an LC50 of 1086.39 mg/L. Clove extract did not show significant insecticidal activity with an LC50 > 2000 mg/L. Significant termiticide effects were found, with LC50 values of 84.09 and 269.98 mg/L for soldiers and workers under the application of Dursban and Protecto, respectively. The LC50 values reported for nymphs were <120, <164.5, and 627.87 mg/L after exposure to Dursban, Protecto, and O. vulgare extract, respectively. The results of the study show that some of the extracts have low toxicity compared to the bioagent and Dursban, and may show promise as natural termiticides, particularly as extracts from O. vulgare.

12.
Microb Pathog ; 147: 104383, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32659315

ABSTRACT

In this study, the antiviral, antifungal, and insecticidal and HPLC analysis of polyphenolic compounds of Eucaluptus camaldulensis Dehnh. bark extract (ECBE) were evaluated. Three fungi, namely Fusarium culmorum MN398395, Rhizoctonia solani MN398397, and Botrytis cinerea MN398399 were used to colonize wood blocks of chinaberry that was previously treated with different concentrations of ECBE at 1%, 2%, and 3%. Antiviral evaluations (protective, curative, and inactivating activities) of the extract at 100 µg/mL were assayed against Tobacco mosaic virus (TMV) MG264131 using the half-leaf method to determine the inhibitory percentage towards the number of local lesions. The protective treatment of Nicotiana glutinosa leaves exhibited excellent activity (72.22%) with a 91.1-fold reduction in TMV-CP accumulation in infected tissues. Furthermore, Real-time quantitative PCR revealed that the expression level of PAL and PR-1 (salicylic acid marker) genes were significantly up regulated at four days-post inoculation (dpi) for all treatments compared to untreated leaves. The insecticidal effect was screened by the contact and fumigant methods against Tribolium castaneum (Herbst) and Sitophilus oryzae L. in vitro. In contact assay, all concentrations 1, 5, 10, 20 and 30 ppm caused 100% toxicity to the two tested pests within 24 h, whereas the fumigant assay, gave the highest mortality against T. castaneum and S. oryzae by 20 ppm (61.66%) and 30 ppm (57.77%), respectively after 24 h. The HPLC analysis of ECBE revealed that benzoic acid, quinol, salicylic acid, myricetin, and rutin were the most abundant polyphenolic compounds found in the extract. In conclusion, when the extract concentration increases, the growth of fungal mycelia was decreased compared with the control, especially against F. culmorum. According to the hypotheses of the results, the ECBE recommended to prevent the wood from discoloration, fungal molds by acting as bio-preservative, also trigger the resistance of plants against viral infection and high toxicity against stored-product insects.


Subject(s)
Eucalyptus , Insecticides , Animals , Antifungal Agents/pharmacology , Antiviral Agents/pharmacology , Botrytis , Chromatography, High Pressure Liquid , Fusarium , Plant Bark/chemistry , Plant Extracts/pharmacology , Rhizoctonia
13.
Nat Prod Res ; 34(23): 3394-3398, 2020 Dec.
Article in English | MEDLINE | ID: mdl-30689407

ABSTRACT

Essential oil (EO) from Eriocephalus africanus L. leaves was evaluated against the growth of some phytopathogenic bacteria including Agrobacerium tumifaciens, Dickeya solani, Erwinia amylovora, Pseudomonas cichorii and Serratia pulmithica using the disc diffusion method and minimum inhibitory concentration (MIC) evaluation. Ten compounds in the EO with dominance of Artemisia ketone (2,5,5-trimethyl-2,6-heptadien-4-one) (77.92%) and ledol (19.92%) were revealed. The antibacterial activity indicated efficacy of essential oil against majority of strains isolated. The most effective action was recorded against D. solani, by 7.5 and 10 µL of oil, with 18.33 mm and 100 µg/mL as zone inhibition and MIC, respectively, whereas the lowest activity was exhibited against P. cichorii (diameter inhibition = 6.66 mm at 10 µL of oil, MIC = 100 µg/mL). The strain S. pulmithica appears to be resistant to the oil when the activity is measured by 10 µL of oil but its growth inhibition was reported with a MIC of 100 µg/mL.


Subject(s)
Anti-Bacterial Agents/pharmacology , Asteraceae/chemistry , Bacteria/drug effects , Oils, Volatile/pharmacology , Bacteria/pathogenicity , Crops, Agricultural/microbiology , Drug Evaluation, Preclinical , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , Monoterpenes/analysis , Oils, Volatile/chemistry , Plant Leaves/chemistry , Pseudomonas/drug effects , Serratia/drug effects , Sesquiterpenes/analysis
14.
Article in English | MEDLINE | ID: mdl-31239852

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease that can affect the central nervous system and behavioral traits in animals. Streptozotocin-induced diabetes is considered an autoimmune disease. The aim of the current study was to determine whether supplementation with the alcoholic extract of Avicennia marina leaves could improve diabetes-associated pathological changes. The animals were divided into four groups: a control group (A), an A. marina receiving nondiabetic group (B), a diabetic group (C), and a DM group orally supplemented with A. marina alcoholic leaf extract (D). The DM group of animals receiving the alcoholic extract of A. marina leaves had reduced blood glucose levels, improved blood picture, and organ functions. This group also showed improvement in locomotory behavior. The results of this study showed that supplementation with the alcoholic extract of A. marina leaves reduced oxidative stress and blood sugar levels, protected the liver, and improved the neurobehavioral changes associated with diabetes in mice. Introducing alcoholic leaf extract of A. marina to diabetic mice decreased inflammatory cells aggregation, vacuolation, and hemorrhage. Additionally, a positive effect of the alcoholic leaf extract on the histopathological changes was observed in the testicular tissue of treated mice.

15.
Microb Pathog ; 135: 103604, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31247257

ABSTRACT

The present study describes the possibility of using some essential oils and monoterpens as bioagents against the growth of Ralstonia solanacearum, a causal bacterium of potato brown rot disease. Eight isolates of the bacterium were recovered from infected potato tubers, showing typical symptoms of the disease, Isolates were identified as R.solanacearum phylotype II, based on biochemical and physiological characteristics, as well as, at the molecular level through PCR analysis. Three essential oils extracted from Corymbia citriodora (leaves), Cupressus sempervirens (aerial parts), and Lantana camara (aerial parts) were evaluated for their antibacterial activity against eight isolates of R. solanacearum phylotype II. Results demonstrated that L. camara essential oil (concentration 5000 µg/mL) had the highest effects against the RsMo2, RsSc1 and Rs48, with inhibition zone (IZ) values of 17.33, 16.33, and 17.50 mm, respectively, also against Rs2 (IZ 14.33 mm), and RsIs2 (IZ 16 mm). C. citriodora oil showed the highest activity against RsBe2 (IZ 14 mm), RsFr4 (IZ 13.66 mm) and RsNe1 (IZ 13.66 mm). Gas Chromatography-Mass Spectrometry (GC-MS-FID) analyzed the chemical composition of these essential oils. It was proved that L. camara leaves contains mainly trans-caryophyllene (16.24%) and α-humulene (9.55%), in C. citriodora oil were α-citronellal (56.55%), α-citronellol (14.89%), and citronellol acetate (13.04%), and in Cup. sempervirens aerial parts were cedrol (22.17%), and Δ3-carene (18.59%). Five monoterpenes were evaluated against the most resistance Ralstonia isolate RsFr5 to the three studied essential oils and found that limonene had the highest effect against it compared with the lowest thymol. The results proved the strong bio effects of the essential oil from L. camara leaves as a natural product contained monoterpenes that can inhibit the growth of tested R. solanacearum phylotype II isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Ralstonia solanacearum/drug effects , Solanum tuberosum/microbiology , Acyclic Monoterpenes , Aldehydes/isolation & purification , Aldehydes/pharmacology , Anti-Bacterial Agents/isolation & purification , Cupressus/chemistry , DNA, Bacterial/analysis , Gas Chromatography-Mass Spectrometry , Lantana/chemistry , Microbial Sensitivity Tests , Monocyclic Sesquiterpenes , Monoterpenes/isolation & purification , Myrtaceae/chemistry , Octanols/isolation & purification , Octanols/pharmacology , Oils, Volatile/isolation & purification , Plant Diseases/microbiology , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Ralstonia solanacearum/growth & development , Ralstonia solanacearum/isolation & purification , Ralstonia solanacearum/physiology , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology
16.
Molecules ; 24(4)2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30781352

ABSTRACT

In this study, for the environmental development, the antifungal, antibacterial, and antioxidant activities of a water extract of flowers from Acacia saligna (Labill.) H. L. Wendl. were evaluated. The extract concentrations were prepared by dissolving them in 10% DMSO. Wood samples of Melia azedarach were treated with water extract, and the antifungal activity was examined at concentrations of 0%, 1%, 2%, and 3% against three mold fungi; Fusarium culmorum MH352452, Rhizoctonia solani MH352450, and Penicillium chrysogenum MH352451 that cause root rot, cankers, and green fruit rot, respectively, isolated from infected Citrus sinensis L. Antibacterial evaluation of the extract was assayed against four phytopathogenic bacteria, including Agrobacterium tumefaciens, Enterobacter cloacae, Erwinia amylovora, and Pectobacterium carotovorum subsp. carotovorum, using the micro-dilution method to determine the minimum inhibitory concentrations (MICs). Further, the antioxidant capacity of the water extract was measured via 2,2'-diphenylpicrylhydrazyl (DPPH). Phenolic and flavonoid compounds in the water extract were analyzed using HPLC: benzoic acid, caffeine, and o-coumaric acid were the most abundant phenolic compounds; while the flavonoid compounds naringenin, quercetin, and kaempferol were identified compared with the standard flavonoid compounds. The antioxidant activity of the water extract in terms of IC50 was considered weak (463.71 µg/mL) compared to the standard used, butylated hydroxytoluene (BHT) (6.26 µg/mL). The MIC values were 200, 300, 300, and 100 µg/mL against the growth of A. tumefaciens, E. cloacae, E. amylovora, and P. carotovorum subsp. carotovorum, respectively, which were lower than the positive control used (Tobramycin 10 µg/disc). By increasing the extract concentration, the percentage inhibition of fungal mycelial was significantly increased compared to the control treatment, especially against P. chrysogenum, suggesting that the use of A. saligna flower extract as an environmentally friendly wood bio-preservative inhibited the growth of molds that cause discoloration of wood and wood products.


Subject(s)
Acacia/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Flavonoids/pharmacology , Flowers/chemistry , Phenols/pharmacology , Bacteria/drug effects , Chromatography, High Pressure Liquid , Fungi/drug effects , Microbial Sensitivity Tests , Plant Extracts/pharmacology
17.
Microb Pathog ; 121: 331-340, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29800700

ABSTRACT

Three bacterial isolates were identified from infected potato tubers showing soft and blackleg like symptoms as well as one isolate from infected pear tree showing crown gall symptom. Conventional and molecular identification proved that bacterial isolates belonging to Pectobacterium carotovorum subsp. carotovorum, Pectobacterium atrosepticum, Dickeya solani and Agrobacterium tumefaciens. The above plant bacterial isolates and human pathogenic bacteria Escherichia coli, Sarcina lutea, and Staphylococcus aureus were used for the bioassay. The chloroform leaf extracts from Duranta plumieri variegata, Lantana camara, and Citharexylum spinosum were assayed for their antibacterial activity by measuring the inhibition zones and minimum inhibitory concentrations (MICs). The suggested chemical compositions of extracts were analyzed using GC/MS apparatus. The main compounds in leaf extract of L. camara were 5,8-diethyl-dodecane, pyrimidin-2-one, 4-[N-methylureido]-1-[4-methylaminocarbonyloxymethyl, oleic acid,3-(octadecyloxy)propyl ester; in D. plumieri were 4,7-dimethoxy-2-methylindan-1-one and 5-(hexadecyloxy)-2-pentadecyl-,trans-1,3-dioxane; and in C. spinosum were N-[5-(3-hydroxy-2-methylpropenyl)-1,3,4,5-tetrahydrobenzo[cd]indol-3-yl]-N-methylacetamide. Promising activity was found against A. tumefaciens, E. coli, P. carotovorum, Sar. lutea, and Staph. aureus with MIC values of 8, 128, 64, 500 and 500 µg/mL, respectively, as L. camara leaf extract was applied. D. plumieri leaf extract showed good activity against D. solani and P. atrosepticum with MIC values of 16 µg/mL and 128 µg/mL, respectively. On the other hand, weak bioactivity was found with leaf extract from C. spinosum. It could be concluded that leaf extracts from D. plumieri and L. camara have a promising antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Plant Extracts/pharmacology , Plant Tubers/microbiology , Solanum tuberosum/microbiology , Verbenaceae/chemistry , Microbial Sensitivity Tests , Plant Diseases/microbiology
18.
Microb Pathog ; 117: 320-326, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29486275

ABSTRACT

The acetone extract from root-bark of Salvadora persica L. (Salvadoraceae), is assayed for its antibacterial activity against some bacterial pathogens. By GC/MS analysis, the main chemical components of the acetone extract were found to be benzylisothiocyanate (39.4%), and benzyl nitrile (benzeneacetonitrile) (37.9%). According the extract concentrations used, the measured inhibition zones observed were between from 13.6 to 18.6 mm, 15.3-23 mm, 13.3-18.3 mm, 13.3-18.3 mm, and 12.3-19 mm, against the isolated plant bacterial pathogens namely Agrobacterium tumefaciens, Pectobacterium atrosepticum, Enterobacter cloacae, Dickeya solani and Ralstonia solanacearum, respectively, whilst it was between 8 and 12 mm, 8-9.6 mm, 8-11.6 mm, and 8-10.3 mm against Bacillus subtilis, Sarcina lutea, Escherichia coli and Staphylococcus aureus, respectively. The minimum inhibitory concentration values of the extract were between 16 and 32 µg/mL against the growth of plant bacterial, and from 1000 to 2000 µg/mL against the growth of the human bacteria. In conclusion, the acetone extract of root-bark of S. persica showed strong antibacterial activity against the plant pathogens and some activity against the human pathogens were reported. The results suggested that using the acetone extract from root-bark of S. persica as bioactive agent against the growth of the studied plant bacterial pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Plant Diseases/microbiology , Plant Extracts/pharmacology , Plant Roots/chemistry , Salvadoraceae/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , DNA, Bacterial , Gas Chromatography-Mass Spectrometry , Isothiocyanates , Microbial Sensitivity Tests , Plant Extracts/administration & dosage , Plant Extracts/chemistry
19.
BMC Complement Altern Med ; 18(1): 23, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29357851

ABSTRACT

BACKGROUND: Cupressus macrocarpa Hartw and Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson, widely grown in many subtropical areas, are used for commercial purposes, such as in perfumery, cosmetics, and room fresheners. Their potential as a source of antimicrobial compounds may be useful in different applications. METHODS: The chemical composition of essential oils (EOs) from C. macrocarpa branchlets and C. citriodora leaves was analyzed by using gas chromatography-mass spectrometry (GC/MS). Antibacterial and antifungal activities were assessed by the micro-dilution method to determine the minimum inhibitory concentrations (MICs), and minimum fungicidal concentrations (MFCs), and minimum bactericidal concentrations (MBCs). Further, the antioxidant capacity of the EOs was determined via 2,2'-diphenypicrylhydrazyl (DPPH) and ß-carotene-linoleic acid assays. RESULTS: Terpinen-4-ol (23.7%), α-phellandrene (19.2%), α-citronellol (17.3%), and citronellal were the major constituents of EO from C. macrocarpa branchlets, and α-citronellal (56%), α-citronellol (14.7%), citronellol acetate (12.3%), isopulegol, and eucalyptol were the primary constituents of EO from C. citriodora leaves. Antibacterial activity with MIC values of EO from C. citriodora leaves was ranged from 0.06 mg/mL to 0.20 mg/mL, and MBC from 0.12 mg/mL against E. coli to 0.41 mg/mL. EO from C. macrocarpa branchlets showed less activity against bacterial strains. The MIC values against tested fungi of the EO from C. citriodora ranged from 0.11 to 0.52 mg/mL while for EO from C. macrocarpa from 0.29 to 3.21 mg/mL. The MIC and MFC values of EOs against P. funiculosum were lower than those obtained from Ketoconazole (KTZ) (0.20; 0.45; 0.29 and 0.53 mg/mL, respectively, vs 0.21 and 0.41 mg/mL. Antioxidant activity of the EO from C. citriodora was higher than that of the positive control but lower than that of the standard butylhydroxytoluene (BHT) (IC50 = 5.1 ± 0.1 µg/mL). CONCLUSION: The results indicate that the EO from Egyptian trees such as C. citriodora leaves may possesses strong bactericidal and fungicidal activities and can be used as an agrochemical for controlling plant pathogens and in human disease management which will add crop additive value.


Subject(s)
Cupressus/chemistry , Myrtaceae/chemistry , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacteria/drug effects , Egypt , Fungi/drug effects , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry
20.
Microb Pathog ; 115: 216-221, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29284134

ABSTRACT

Eight molecular-characterized isolates of Ralstonia solanacearum from potato belonging to race 3 biovar 2, their virulence were evaluated on potato cv. Lady Rosette, tomato cv. Strain B, eggplant cv. Balady and pepper cv. Balady and showed high virulence on potato and tomato, and lower virulence on eggplant and pepper. A laboratory study conducted to produce polyclonal antibodies against the potato brown rot bacterium; R. solanacearum cells were generated in female New Zealand white rabbits. A modification were made on the technique of indirect enzyme-linked immunosorbent assay (ELISA) to improve the sensitivity of detection, including antigenic and sensitivity to R. solanacearum race 3 biovar 2 isolates. Determination of the optimum period to collect the antiserum (including, polyclonal antibodies) showed that the best collection dates were at 14, 3 and 7 days, in that order. The efficiency of the antiserum was compared among 42 isolates that cause potato brown rot disease; our polyclonal antiserum (14 days) reacted positively with all tested isolates at a dilution of 1:6.4 × 103. Data indicated the different reactions of eight R. solanacearum isolates at various dilutions (1:1.6 × 103 to 1:5.12 × 106) at 14 days against polyclonal antiserumat a concentration of approximately 1 × 108 CFU/mL and we found the lowest detection level by the indirect ELISA technique was 106 CFU/mL. Finally we recommended the reasonable sensitivity results of the ELISA technique to detect the bacterial pathogen given than the cost of this technique if much lower than that of other expensive molecular techniques.


Subject(s)
Antibodies, Bacterial/immunology , Enzyme-Linked Immunosorbent Assay/methods , Ralstonia solanacearum/pathogenicity , Solanum lycopersicum/microbiology , Solanum melongena/microbiology , Solanum tuberosum/microbiology , Animals , Female , Plant Diseases/microbiology , Rabbits , Ralstonia solanacearum/genetics , Ralstonia solanacearum/immunology , Ralstonia solanacearum/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL