Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Inherit Metab Dis ; 42(5): 1030-1039, 2019 09.
Article in English | MEDLINE | ID: mdl-31032972

ABSTRACT

Murine succinic semialdehyde dehydrogenase deficiency (SSADHD) manifests with high concentrations of γ-aminobutyric acid (GABA) and γ-hydroxybutyrate (GHB) and low glutamine in the brain. To understand the pathogenic contribution of central glutamine deficiency, we exposed aldh5a1-/- (SSADHD) mice and their genetic controls (aldh5a1+/+ ) to either a 4% (w/w) glutamine-containing diet or a glutamine-free diet from conception until postnatal day 30. Endpoints included brain, liver and blood amino acids, brain GHB, ataxia scores, and open field testing. Glutamine supplementation did not improve aldh5a1-/- brain glutamine deficiency nor brain GABA and GHB. It decreased brain glutamate but did not change the ratio of excitatory (glutamate) to inhibitory (GABA) neurotransmitters. In contrast, glutamine supplementation significantly increased brain arginine (30% for aldh5a1+/+ and 18% for aldh5a1-/- mice), and leucine (12% and 18%). Glutamine deficiency was confirmed in the liver. The test diet increased hepatic glutamate in both genotypes, decreased glutamine in aldh5a1+/+ but not in aldh5a1-/- , but had no effect on GABA. Dried bloodspot analyses showed significantly elevated GABA in mutants (approximately 800% above controls) and decreased glutamate (approximately 25%), but no glutamine difference with controls. Glutamine supplementation did not impact blood GABA but significantly increased glutamine and glutamate in both genotypes indicating systemic exposure to dietary glutamine. Ataxia and pronounced hyperactivity were observed in aldh5a1-/- mice but remained unchanged by the diet intervention. The study suggests that glutamine supplementation improves peripheral but not central glutamine deficiency in experimental SSADHD. Future studies are needed to fully understand the pathogenic role of brain glutamine deficiency in SSADHD.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Biomarkers/blood , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Glutamine/administration & dosage , Succinate-Semialdehyde Dehydrogenase/deficiency , Amino Acid Metabolism, Inborn Errors/blood , Amino Acids/metabolism , Animals , Brain/pathology , Developmental Disabilities/blood , Dietary Supplements , Disease Models, Animal , Female , Humans , Male , Maternal Nutritional Physiological Phenomena , Mice , Mice, Inbred C57BL , Mice, Knockout , Succinate-Semialdehyde Dehydrogenase/blood , Succinate-Semialdehyde Dehydrogenase/genetics , Succinate-Semialdehyde Dehydrogenase/metabolism , gamma-Aminobutyric Acid/metabolism
2.
Pharmacol Res Perspect ; 7(1): e00456, 2019 02.
Article in English | MEDLINE | ID: mdl-30631446

ABSTRACT

Vigabatrin (VGB; (S)-(+)/(R)-(-) 4-aminohex-5-enoic acid), an antiepileptic irreversibly inactivating GABA transaminase (GABA-T), manifests use-limiting ocular toxicity. Hypothesizing that the active S enantiomer of VGB would preferentially accumulate in eye and visual cortex (VC) as one potential mechanism for ocular toxicity, we infused racemic VGB into mice via subcutaneous minipump at 35, 70, and 140 mg/kg/d (n = 6-8 animals/dose) for 12 days. VGB enantiomers, total GABA and ß-alanine (BALA), 4-guanidinobutyrate (4-GBA), and creatine were quantified by mass spectrometry in eye, brain, liver, prefrontal cortex (PFC), and VC. Plasma VGB concentrations increased linearly by dose (3 ± 0.76 (35 mg/kg/d); 15.1 ± 1.4 (70 mg/kg/d); 34.6 ± 3.2 µmol/L (140 mg/kg/d); mean ± SEM) with an S/R ratio of 0.74 ± 0.02 (n = 14). Steady state S/R ratios (35, 70 mg/kg/d doses) were highest in eye (5.5 ± 0.2; P < 0.0001), followed by VC (3.9 ± 0.4), PFC (3.6 ± 0.3), liver (2.9 ± 0.1), and brain (1.5 ± 0.1; n = 13-14 each). Total VGB content of eye exceeded that of brain, PFC and VC at all doses. High-dose VGB diminished endogenous metabolite production, especially in PFC and VC. GABA significantly increased in all tissues (all doses) except brain; BALA increases were confined to liver and VC; and 4-GBA was prominently increased in brain, PFC and VC (and eye at high dose). Linear correlations between enantiomers and GABA were observed in all tissues, but only in PFC/VC for BALA, 4-GBA, and creatine. Preferential accumulation of the VGB S isomer in eye and VC may provide new insight into VGB ocular toxicity.


Subject(s)
Anticonvulsants/pharmacokinetics , Vigabatrin/pharmacokinetics , Vision Disorders/prevention & control , 4-Aminobutyrate Transaminase/antagonists & inhibitors , Animals , Anticonvulsants/adverse effects , Anticonvulsants/chemistry , Drug Evaluation, Preclinical , Eye/drug effects , Eye/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Animal , Stereoisomerism , Tissue Distribution , Vigabatrin/adverse effects , Vigabatrin/chemistry , Vision Disorders/chemically induced , Visual Cortex/drug effects , Visual Cortex/metabolism , Visual Fields/drug effects
3.
Neuropediatrics ; 47(1): 64-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26619324

ABSTRACT

Leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) is caused by autosomal recessive EARS2 mutations. Onset is most often in infancy, but in severe cases in the neonatal period. Patients typically have magnetic resonance imaging (MRI) signal abnormalities involving the thalamus, brainstem, and deep cerebral white matter. Most signal abnormalities resolve, but in severe cases at the expense of tissue loss. Here, we report a patient with an encephalopathy of antenatal onset. His early MRI at 8 months of age showed signal abnormalities in the deep cerebral white matter that improved over time. The thalami were absent with the configuration of a developmental anomaly, without evidence of a lesion. We hypothesized that this was a case of LTBL in which the thalamic damage occurred antenatally and was incorporated in the normal brain development. The diagnosis was confirmed by a novel homozygous EARS2 mutation. Our case adds to the phenotypic and genetic spectrum of LTBL.


Subject(s)
Glutamate-tRNA Ligase/genetics , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Mutation/genetics , Thalamus/pathology , Adolescent , Brain Stem/metabolism , Humans , Lactic Acid/metabolism , Magnetic Resonance Imaging , Male
4.
Pediatr Neurol ; 51(1): 133-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24766785

ABSTRACT

BACKGROUND: Guanidinoacetate methyltransferase deficiency is an autosomal recessively inherited disorder of creatine biosynthesis. We report a new patient with guanidinoacetate methyltransferase deficiency and her >3-year treatment outcome. PATIENT: This is a 6-year-old girl who was diagnosed with guanidinoacetate methyltransferase deficiency at the age of 28 months. She presented with moderate global developmental delay, one afebrile seizure, and hypotonia between 6 and 18 months of life. She was treated with creatine and ornithine supplementation and a strict arginine-restricted diet for 42 months. RESULTS: Mutation analysis (compound heterozygous mutations, a known c.327G>A and a novel c.58dupT [p.Trp20LeufsX65]) and enzyme studies in primary fibroblasts confirmed the diagnosis. After 33 months of therapy, her cerebrospinal fluid guanidinoacetate level decreased from 47 to 5.3 times the normal level. Brain creatine by proton magnetic resonance spectroscopy increased by >75% but did not normalize in the basal ganglia and white matter after 3 years of therapy. Additional treatment with sodium benzoate for 17 months did not further improve plasma guanidinoacetate levels, which questions the relevance of this therapy. CONCLUSION: Treatment did not improve moderate intellectual disability or normalize guanidinoacetate accumulation in the central nervous system.


Subject(s)
Food Preservatives/adverse effects , Guanidinoacetate N-Methyltransferase/deficiency , Language Development Disorders/drug therapy , Movement Disorders/congenital , Sodium Benzoate/adverse effects , Amino Acids/blood , Child , Creatine/administration & dosage , Dietary Supplements , Female , Guanidinoacetate N-Methyltransferase/cerebrospinal fluid , Guanidinoacetate N-Methyltransferase/genetics , Humans , Language Development Disorders/cerebrospinal fluid , Language Development Disorders/genetics , Magnetic Resonance Spectroscopy , Movement Disorders/cerebrospinal fluid , Movement Disorders/drug therapy , Movement Disorders/genetics , Mutation/genetics , Ornithine/administration & dosage , Protons , Psychological Tests , Treatment Failure , Treatment Outcome
5.
Turk J Pediatr ; 55(2): 198-202, 2013.
Article in English | MEDLINE | ID: mdl-24192681

ABSTRACT

A two-month-old male infant presented with jaundice, pallor, and hepatomegaly. The first child of non-consanguineous parents had also suffered from hemolytic anemia and neuromotor retardation and died at the age of 21 months. The patient required phototherapy and transfusion in the newborn period but hemolysis was mild thereafter. The patient had neuromotor retardation, and at the age of 14 months, ventilatory support was necessary, and the patient lived until 17 months. Triose-phosphate isomerase (TPI) deficiency, which is a rare autosomal recessive multisystem disorder of glycolysis, was detected. There was homozygous missense mutation in the TPI1 gene (p.Glu105Asp). This is the most common mutation with a severe phenotype that requires ventilator support in the second year of life. In patients with hemolysis and neuromotor retardation, TPI deficiency must be considered. There is no specific treatment, but detection of the index case may provide the opportunity for genetic counseling and prenatal diagnosis.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Glycolysis , Triose-Phosphate Isomerase/deficiency , Anemia, Hemolytic, Congenital Nonspherocytic/therapy , Fatal Outcome , Genetic Counseling , Humans , Infant , Male , Metabolism, Inborn Errors , Motor Skills , Mutation, Missense , Prenatal Diagnosis , Respiration, Artificial
6.
Mol Genet Metab ; 106(1): 48-54, 2012 May.
Article in English | MEDLINE | ID: mdl-22386973

ABSTRACT

BACKGROUND: Arginine:glycineamidinotransferase (AGAT/GATM) deficiency has been described in 9 patients across 4 families. Here we describe the clinical outcome and response to creatine supplementation in a patient of the second family affected with AGAT deficiency-a 9-year-old girl. PATIENT AND METHODS: Delayed motor milestones were noticed from 4 months of age and at 14 months moderate hypotonia, developmental delay and failure to thrive. Laboratory studies revealed low plasma creatine as well as extremely low levels of guanidinoacetic acid in urine and plasma. Proton magnetic resonance spectroscopy (MRS) of the brain showed absence of creatine. DNA sequence analysis revealed a homozygous mutation (c.484+1G>T) in the AGAT/GATM gene. AGAT activity was not detectable in lymphoblasts and RNA analysis revealed a truncated mRNA (r.289_484del196) that is degraded via Nonsense Mediated Decay. At 16 months, Bayley's Infant Development Scale (BIDS) showed functioning at 43% of chronologic age. Oral creatine supplementation (up to 800 mg/kg/day) was begun. RESULTS: At age 9 years she demonstrated advanced academic performance. Partial recovery of cerebral creatine levels was demonstrated on MRS at 25 months of age. Brain MRS at 40 months of age revealed a creatine/NAA ratio of about 80% of that in age-matched controls. CONCLUSIONS: 8 years post initiation of oral creatine supplementation, patient demonstrates superior nonverbal and academic abilities, with average verbal skills. We emphasize that early diagnosis combined with early treatment onset of AGAT deficiency may lead to improvement of developmental outcome.


Subject(s)
Amidinotransferases/genetics , Amidinotransferases/metabolism , Creatine/administration & dosage , Creatine/blood , Developmental Disabilities , Amidinotransferases/deficiency , Brain/metabolism , Brain/pathology , Child , Developmental Disabilities/blood , Developmental Disabilities/diet therapy , Dietary Supplements , Female , Glycine/analogs & derivatives , Glycine/blood , Glycine/urine , Humans , Mutation
7.
J Inherit Metab Dis ; 35(1): 151-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21660517

ABSTRACT

BACKGROUND: X-linked cerebral creatine deficiency is caused by the deficiency of the creatine transporter (CTP) encoded by the SLC6A8 gene. PATIENTS AND METHODS: We report here a series of six patients with severe CTP deficiency, four males and two females; clinical presentations include mild to severe mental retardation (6/6), associated with psychiatric symptoms (5/6: autistic behaviour, chronic hallucinatory psychosis), seizures (2/6) and muscular symptoms (2/4 males). Diagnosis was suspected upon elevated urinary creatine/creatinine (except in one of the female patients) and on a markedly decreased creatine peak on magnetic resonance spectroscopy (MRS). Diagnosis was confirmed by molecular analysis that identified four novel mutations not reported so far, including a mutation found twice in two male patients. All patients were treated successively and according to the same protocol by creatine alone then combined to its precursors, L-glycine and L-arginine for 42 months. RESULTS AND CONCLUSION: In our patients, creatine supplementation alone or with its precursors L-glycine and L-arginine showed benefit only in the muscular symptoms of the disease and no improvement in the cognitive and psychiatric manifestations and did not modify brain creatine content on MRS of male and female CTP deficient patients. New treatment strategies are required including creatine derivatives transported independently from CTP or using alternative pathways and transporters.


Subject(s)
Amino Acid Transport Disorders, Inborn/therapy , Arginine/therapeutic use , Creatine/therapeutic use , Glycine/therapeutic use , Membrane Transport Proteins/genetics , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Administration, Oral , Adolescent , Child , Child, Preschool , Cognition Disorders/diagnosis , Female , Humans , Intellectual Disability/diagnosis , Magnetic Resonance Spectroscopy/methods , Male
8.
Mol Genet Metab ; 105(1): 155-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22019491

ABSTRACT

A 4-year-old female with history of developmental regression and autistic features was diagnosed with guanidinoacetate methyltransferase deficiency at age 21 months. Upon treatment, she showed improvements in her developmental milestones, sensorial-neural hearing loss and brain atrophy on cranial-MRI. The creatine/choline ratio increased 82% in basal ganglia and 88% in white matter on cranial MR-spectroscopy. The CSF guanidinoacetate decreased 80% after six months of ornithine and creatine supplementation and an additional 8% after 18 months of additional arginine restricted diet. We report the most favorable clinical and biochemical outcome on treatment in our patient.


Subject(s)
Arginine/deficiency , Diet , Guanidinoacetate N-Methyltransferase/deficiency , Metabolism, Inborn Errors/diet therapy , Metabolism, Inborn Errors/enzymology , Child, Preschool , Female , Glycine/analogs & derivatives , Glycine/blood , Glycine/cerebrospinal fluid , Glycine/urine , Guanidinoacetate N-Methyltransferase/metabolism , Humans , Infant , Infant, Newborn , Treatment Outcome
9.
Mol Genet Metab ; 91(3): 294-6, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17466557

ABSTRACT

Biochemical and developmental results of treatment of a guanidinoacetate methyltransferase (GAMT) deficient patient with a mild clinical presentation and remarkable developmental improvement after treatment are presented. Treatment with creatine (Cr) supplementation resulted in partial normalization of cerebral (measured with magnetic resonance proton spectroscopy) and plasma levels of Cr and guanidinoacetate (GAA). Addition of high dose ornithine to the treatment led to further normalization of plasma GAA, while cerebral Cr and GAA did not improve further.


Subject(s)
Creatine/therapeutic use , Dietary Supplements , Guanidinoacetate N-Methyltransferase/deficiency , Brain/metabolism , Child Development , Child, Preschool , Creatine/blood , Glycine/analogs & derivatives , Glycine/blood , Glycine/urine , Humans , Magnetic Resonance Spectroscopy , Treatment Outcome
10.
Eur J Pediatr ; 166(9): 921-5, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17186272

ABSTRACT

Guanidinoacetate N-methyltransferase (GAMT) deficiency is a defect in the biosynthesis of creatine (Cr). So far, reports have not focused on the description of developmental abilities in this disorder. Here, we present the result of formal testing of developmental abilities in a GAMT-deficient patient. Our patient, a 3-year-old boy with GAMT deficiency, presented clinically with a severe language production delay and nearly normal nonverbal development. Treatment with oral Cr supplementation led to partial restoration of the cerebral Cr concentration and a clinically remarkable acceleration of language production development. In contrast to clinical observation, formal testing showed a rather harmonic developmental delay before therapy and a general improvement, but no specific acceleration of language development after therapy. From our case, we conclude that in GAMT deficiency language delay is not always more prominent than delays in other developmental areas. The discrepancy between the clinical impression and formal testing underscores the importance of applying standardized tests in children with developmental delays. Screening for Cr deficiency by metabolite analysis of body fluids or proton magnetic resonance spectroscopy of the brain deficiency should be considered in any child with global developmental delay/mental retardation lacking clues for an alternative etiology.


Subject(s)
Developmental Disabilities/etiology , Guanidinoacetate N-Methyltransferase/deficiency , Language Development Disorders/etiology , Metabolism, Inborn Errors/complications , Amino Acids/administration & dosage , Child, Preschool , Creatine/administration & dosage , Developmental Disabilities/diagnosis , Developmental Disabilities/drug therapy , Humans , Language Development Disorders/diagnosis , Language Development Disorders/drug therapy , Male , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL