Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Nature ; 608(7922): 336-345, 2022 08.
Article in English | MEDLINE | ID: mdl-35896751

ABSTRACT

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.


Subject(s)
Archaeology , Dairying , Disease , Genetics, Population , Lactase , Milk , Selection, Genetic , Animals , Animals, Wild , Biological Specimen Banks , Ceramics/history , Cohort Studies , Dairying/history , Europe/epidemiology , Europe/ethnology , Famine/statistics & numerical data , Gene Frequency , Genotype , History, Ancient , Humans , Lactase/genetics , Milk/metabolism , United Kingdom
2.
Nature ; 580(7804): 506-510, 2020 04.
Article in English | MEDLINE | ID: mdl-32322061

ABSTRACT

Pottery is one of the most commonly recovered artefacts from archaeological sites. Despite more than a century of relative dating based on typology and seriation1, accurate dating of pottery using the radiocarbon dating method has proven extremely challenging owing to the limited survival of organic temper and unreliability of visible residues2-4. Here we report a method to directly date archaeological pottery based on accelerator mass spectrometry analysis of 14C in absorbed food residues using palmitic (C16:0) and stearic (C18:0) fatty acids purified by preparative gas chromatography5-8. We present accurate compound-specific radiocarbon determinations of lipids extracted from pottery vessels, which were rigorously evaluated by comparison with dendrochronological dates9,10 and inclusion in site and regional chronologies that contained previously determined radiocarbon dates on other materials11-15. Notably, the compound-specific dates from each of the C16:0 and C18:0 fatty acids in pottery vessels provide an internal quality control of the results6 and are entirely compatible with dates for other commonly dated materials. Accurate radiocarbon dating of pottery vessels can reveal: (1) the period of use of pottery; (2) the antiquity of organic residues, including when specific foodstuffs were exploited; (3) the chronology of sites in the absence of traditionally datable materials; and (4) direct verification of pottery typochronologies. Here we used the method to date the exploitation of dairy and carcass products in Neolithic vessels from Britain, Anatolia, central and western Europe, and Saharan Africa.


Subject(s)
Archaeology/methods , Ceramics/chemistry , Ceramics/history , Radiometric Dating/methods , Radiometric Dating/standards , Africa, Northern , Archaeology/standards , Bayes Theorem , Carbon Radioisotopes , Europe , Fatty Acids/chemistry , Fatty Acids/isolation & purification , Food/history , History, Ancient , Lipids/chemistry , Lipids/isolation & purification , Mass Spectrometry
3.
Sci Rep ; 7(1): 7146, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769118

ABSTRACT

Since their domestication in the Mediterranean zone of Southwest Asia in the eighth millennium BC, sheep, goats, pigs and cattle have been remarkably successful in colonizing a broad variety of environments. The initial steps in this process can be traced back to the dispersal of farming groups into the interior of the Balkans in the early sixth millennium BC, who were the first to introduce Mediterranean livestock beyond its natural climatic range. Here, we combine analysis of biomolecular and isotopic compositions of lipids preserved in prehistoric pottery with faunal analyses of taxonomic composition from the earliest farming sites in southeast Europe to reconstruct this pivotal event in the early history of animal husbandry. We observe a marked divergence between the (sub)Mediterranean and temperate regions of Southeast Europe, and in particular a significant increase of dairying in the biochemical record coupled with a shift to cattle and wild fauna at most sites north of the Balkan mountain range. The findings strongly suggest that dairying was crucial for the expansion of the earliest farming system beyond its native bioclimatic zone.


Subject(s)
Animal Husbandry , Domestication , Animal Husbandry/history , Animals , Archaeology/history , History, Ancient , Mediterranean Region
4.
Proc Natl Acad Sci U S A ; 113(48): 13594-13599, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27849595

ABSTRACT

In the absence of any direct evidence, the relative importance of meat and dairy productions to Neolithic prehistoric Mediterranean communities has been extensively debated. Here, we combine lipid residue analysis of ceramic vessels with osteo-archaeological age-at-death analysis from 82 northern Mediterranean and Near Eastern sites dating from the seventh to fifth millennia BC to address this question. The findings show variable intensities in dairy and nondairy activities in the Mediterranean region with the slaughter profiles of domesticated ruminants mirroring the results of the organic residue analyses. The finding of milk residues in very early Neolithic pottery (seventh millennium BC) from both the east and west of the region contrasts with much lower intensities in sites of northern Greece, where pig bones are present in higher frequencies compared with other locations. In this region, the slaughter profiles of all domesticated ruminants suggest meat production predominated. Overall, it appears that milk or the by-products of milk was an important foodstuff, which may have contributed significantly to the spread of these cultural groups by providing a nourishing and sustainable product for early farming communities.


Subject(s)
Animal Husbandry/history , Dairying/history , Lipids/analysis , Agriculture , Animals , Animals, Domestic , Archaeology , Cattle , Dairying/organization & administration , History, Ancient , Humans , Mediterranean Region , Milk/chemistry , Ruminants
5.
Nature ; 527(7577): 226-30, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26560301

ABSTRACT

The pressures on honeybee (Apis mellifera) populations, resulting from threats by modern pesticides, parasites, predators and diseases, have raised awareness of the economic importance and critical role this insect plays in agricultural societies across the globe. However, the association of humans with A. mellifera predates post-industrial-revolution agriculture, as evidenced by the widespread presence of ancient Egyptian bee iconography dating to the Old Kingdom (approximately 2400 BC). There are also indications of Stone Age people harvesting bee products; for example, honey hunting is interpreted from rock art in a prehistoric Holocene context and a beeswax find in a pre-agriculturalist site. However, when and where the regular association of A. mellifera with agriculturalists emerged is unknown. One of the major products of A. mellifera is beeswax, which is composed of a complex suite of lipids including n-alkanes, n-alkanoic acids and fatty acyl wax esters. The composition is highly constant as it is determined genetically through the insect's biochemistry. Thus, the chemical 'fingerprint' of beeswax provides a reliable basis for detecting this commodity in organic residues preserved at archaeological sites, which we now use to trace the exploitation by humans of A. mellifera temporally and spatially. Here we present secure identifications of beeswax in lipid residues preserved in pottery vessels of Neolithic Old World farmers. The geographical range of bee product exploitation is traced in Neolithic Europe, the Near East and North Africa, providing the palaeoecological range of honeybees during prehistory. Temporally, we demonstrate that bee products were exploited continuously, and probably extensively in some regions, at least from the seventh millennium cal BC, likely fulfilling a variety of technological and cultural functions. The close association of A. mellifera with Neolithic farming communities dates to the early onset of agriculture and may provide evidence for the beginnings of a domestication process.


Subject(s)
Beekeeping/history , Bees , Waxes/analysis , Waxes/history , Africa, Northern , Animals , Archaeology , Ceramics/chemistry , Ceramics/history , Europe , Farmers/history , Geographic Mapping , History, Ancient , Lipids/analysis , Lipids/chemistry , Middle East , Spatio-Temporal Analysis , Waxes/chemistry
6.
Nature ; 493(7433): 522-5, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23235824

ABSTRACT

The introduction of dairying was a critical step in early agriculture, with milk products being rapidly adopted as a major component of the diets of prehistoric farmers and pottery-using late hunter-gatherers. The processing of milk, particularly the production of cheese, would have been a critical development because it not only allowed the preservation of milk products in a non-perishable and transportable form, but also it made milk a more digestible commodity for early prehistoric farmers. The finding of abundant milk residues in pottery vessels from seventh millennium sites from north-western Anatolia provided the earliest evidence of milk processing, although the exact practice could not be explicitly defined. Notably, the discovery of potsherds pierced with small holes appear at early Neolithic sites in temperate Europe in the sixth millennium BC and have been interpreted typologically as 'cheese-strainers', although a direct association with milk processing has not yet been demonstrated. Organic residues preserved in pottery vessels have provided direct evidence for early milk use in the Neolithic period in the Near East and south-eastern Europe, north Africa, Denmark and the British Isles, based on the δ(13)C and Δ(13)C values of the major fatty acids in milk. Here we apply the same approach to investigate the function of sieves/strainer vessels, providing direct chemical evidence for their use in milk processing. The presence of abundant milk fat in these specialized vessels, comparable in form to modern cheese strainers, provides compelling evidence for the vessels having being used to separate fat-rich milk curds from the lactose-containing whey. This new evidence emphasizes the importance of pottery vessels in processing dairy products, particularly in the manufacture of reduced-lactose milk products among lactose-intolerant prehistoric farming communities.


Subject(s)
Ceramics/history , Cheese/history , Dairying/history , Lipids/analysis , Milk/chemistry , Africa, Northern , Aluminum Silicates , Animals , Archaeology , Cheese/analysis , Clay , Europe , Fatty Acids/analysis , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry , History, Ancient , Humans , Lactose/analysis , Lactose/metabolism , Lactose Intolerance/history , Milk/history , Milk Proteins/chemistry , Triglycerides/analysis , Whey Proteins
SELECTION OF CITATIONS
SEARCH DETAIL