Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958986

ABSTRACT

Gastric cancer, particularly adenocarcinoma, is a significant global health concern. Environmental risk factors, such as Helicobacter pylori infection and diet, play a role in its development. This study aimed to characterize the chemical composition and evaluate the in vitro antibacterial and antitumor activities of an Aristolochia olivieri Colleg. ex Boiss. Leaves' methanolic extract (AOME). Additionally, morphological changes in gastric cancer cell lines were analyzed. AOME was analyzed using HPLC-MS/MS, and its antibacterial activity against H. pylori was assessed using the broth microdilution method. MIC and MBC values were determined, and positive and negative controls were included in the evaluation. Anticancer effects were assessed through in vitro experiments using AGS, KATO-III, and SNU-1 cancer cell lines. The morphological changes were examined through SEM and TEM analyses. AOME contained several compounds, including caffeic acid, rutin, and hyperoside. The extract displayed significant antimicrobial effects against H. pylori, with consistent MIC and MBC values of 3.70 ± 0.09 mg/mL. AOME reduced cell viability in all gastric cancer cells in a dose- and time-dependent manner. Morphological analyses revealed significant ultrastructural changes in all tumor cell lines, suggesting the occurrence of cellular apoptosis. This study demonstrated that AOME possesses antimicrobial activity against H. pylori and potent antineoplastic properties in gastric cancer cell lines. AOME holds promise as a natural resource for innovative nutraceutical approaches in gastric cancer management. Further research and in vivo studies are warranted to validate its potential clinical applications.


Subject(s)
Aristolochia , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/prevention & control , Stomach Neoplasms/metabolism , Helicobacter Infections/metabolism , Tandem Mass Spectrometry , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Gastric Mucosa/metabolism
2.
Nutr Res ; 74: 10-22, 2020 02.
Article in English | MEDLINE | ID: mdl-31895993

ABSTRACT

Skeletal muscle atrophy is the consequence of various conditions, such as disuse, denervation, fasting, aging, and disease. Even if the underlying molecular mechanisms are still not fully understood, an elevated oxidative stress related to mitochondrial dysfunction has been proposed as one of the major contributors to skeletal muscle atrophy. Researchers have described various forms of nutritional supplementation to prevent oxidative stress-induced muscle wasting. Among a variety of nutrients, attention has also focused on polyphenols, a wide range of plant-based compounds with antioxidant and inflammatory properties, many of which have beneficial effects on human health and might retard skeletal muscle loss and function impairment. The purpose of this review is to describe polyphenol actions in skeletal muscle atrophy prevention. Published articles from the last 10 years were searched on PubMed and other databases. Polyphenols are important molecules that should be considered when discussing possible strategies against muscle atrophy. In particular, the collected studies describe, for each polyphenol subclass, the beneficial effect on muscle mass preservation in various skeletal muscle disorders. In these examples, the polyphenol compounds appear to mainly act by reversing mitochondrial dysfunction. Given that the current information on polyphenols is mostly restricted to basic studies, more comprehensive research and additional studies should be performed to clarify their mechanisms of action in improving skeletal muscle functions during atrophy.


Subject(s)
Muscle, Skeletal/physiopathology , Muscular Atrophy/prevention & control , Polyphenols/administration & dosage , Acids, Carbocyclic/administration & dosage , Animals , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Diet , Dietary Supplements , Flavonoids/administration & dosage , Fruit , Humans , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/ultrastructure , Muscular Atrophy/physiopathology , Stilbenes , Vegetables
3.
J Med Food ; 20(4): 410-419, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28165846

ABSTRACT

Wine contains various polyphenols such as flavonoids, anthocyanins, and tannins. These molecules are responsible for the quality of wines, influencing their astringency, bitterness, and color and they are considered to have antioxidant activity. Polyphenols, extracted from grapes during the processes of vinification, could protect the body cells against reactive oxygen species level increase and could be useful to rescue several pathologies where oxidative stress represents the main cause. For that, in this study, red and white wine, provided by an Italian vinery (Marche region), have been analyzed. Chromatographic and morphofunctional analyses have been carried out for polyphenol extraction and to evaluate their protective effect on human myeloid U937 cells exposed to hydrogen peroxide. Both types of wines contained a mix of phenolic compounds with antioxidant properties and their content decreased, as expected, in white wine. Ultrastructural observations evidenced that wines, in particular red wine, strongly prevent mitochondrial damage and apoptotic cell death. In conclusion, the considered extracts show a relevant polyphenol content with strong antioxidant properties and abilities to prevent apoptosis. These findings suggest, for these compounds, a potential role in all pathological conditions where the body antioxidant system is overwhelmed.


Subject(s)
Antioxidants/chemistry , Oxidative Stress , Polyphenols/chemistry , Wine , Anthocyanins/chemistry , Apoptosis , Cell Survival , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Humans , Hydrogen Peroxide , Microscopy, Electron, Transmission , Spectrometry, Mass, Electrospray Ionization , Tannins/chemistry , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL