Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Signal ; 13(648)2020 09 08.
Article in English | MEDLINE | ID: mdl-32900879

ABSTRACT

Calorie restriction (CR) enhances health span (the length of time that an organism remains healthy) and increases longevity across species. In mice, these beneficial effects are partly mediated by the lowering of core body temperature that occurs during CR. Conversely, the favorable effects of CR on health span are mitigated by elevating ambient temperature to thermoneutrality (30°C), a condition in which hypothermia is blunted. In this study, we compared the global metabolic response to CR of mice housed at 22°C (the standard housing temperature) or at 30°C and found that thermoneutrality reverted 39 and 78% of total systemic or hypothalamic metabolic variations caused by CR, respectively. Systemic changes included pathways that control fuel use and energy expenditure during CR. Cognitive computing-assisted analysis of these metabolomics results helped to prioritize potential active metabolites that modulated the hypothermic response to CR. Last, we demonstrated with pharmacological approaches that nitric oxide (NO) produced through the citrulline-NO pathway promotes CR-triggered hypothermia and that leucine enkephalin directly controls core body temperature when exogenously injected into the hypothalamus. Because thermoneutrality counteracts CR-enhanced health span, the multiple metabolites and pathways altered by thermoneutrality may represent targets for mimicking CR-associated effects.


Subject(s)
Adaptation, Physiological/physiology , Caloric Restriction/methods , Energy Metabolism/physiology , Hypothalamus/physiology , Temperature , Animals , Chromatography, Liquid/methods , Citrulline/metabolism , Cluster Analysis , Female , Hypothalamus/metabolism , Mass Spectrometry/methods , Metabolome , Metabolomics/classification , Metabolomics/methods , Mice, Inbred C57BL , Nitric Oxide/metabolism
2.
Curr Biol ; 29(24): 4291-4299.e4, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31786059

ABSTRACT

Mammals maintain a nearly constant core body temperature (Tb) by balancing heat production and heat dissipation. This comes at a high metabolic cost that is sustainable if adequate calorie intake is maintained. When nutrients are scarce or experimentally reduced such as during calorie restriction (CR), endotherms can reduce energy expenditure by lowering Tb [1-6]. This adaptive response conserves energy, limiting the loss of body weight due to low calorie intake [7-10]. Here we show that this response is regulated by the kappa opioid receptor (KOR). CR is associated with increased hypothalamic levels of the endogenous opioid Leu-enkephalin, which is derived from the KOR agonist precursor dynorphin [11]. Pharmacological inhibition of KOR, but not of the delta or the mu opioid receptor subtypes, fully blocked CR-induced hypothermia and increased weight loss during CR independent of calorie intake. Similar results were seen with DIO mice subjected to CR. In contrast, inhibiting KOR did not change Tb in animals fed ad libitum (AL). Chemogenetic inhibition of KOR neurons in the hypothalamic preoptic area reduced the CR-induced hypothermia, whereas chemogenetic activation of prodynorphin-expressing neurons in the arcuate or the parabrachial nucleus lowered Tb. These data indicate that KOR signaling is a pivotal regulator of energy homeostasis and can affect body weight during dieting by modulating Tb and energy expenditure.


Subject(s)
Body Temperature Regulation/genetics , Body Temperature Regulation/physiology , Receptors, Opioid, kappa/metabolism , Analgesics, Opioid/metabolism , Animals , Body Weight/physiology , Brain/metabolism , Caloric Restriction/methods , Energy Intake/physiology , Energy Metabolism/physiology , Female , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Receptors, Opioid, kappa/genetics , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/physiology , Weight Loss/physiology
3.
Alcohol ; 76: 37-45, 2019 05.
Article in English | MEDLINE | ID: mdl-30554034

ABSTRACT

Alcohol produces complex effects on the immune system. Moderate alcohol use (1-2 drinks per day) has been shown to produce anti-inflammatory responses in human blood monocytes, whereas, the post mortem brains of severe alcoholics show increased immune gene expression and activated microglial markers. The present study was conducted to evaluate the time course of alcohol effects during exposure and after withdrawal, and to determine the relationship between microglial and cytokine responses in brain and blood. Forty-eight adult, male Wistar rats were exposed to chronic ethanol vapors, or air control, for 5 weeks. Following ethanol/air exposure blood and brains were collected at three time points: 1) while intoxicated, following 35 days of air/vapor exposure; 2) following 24 h of withdrawal from exposure, and 3) 28 days after withdrawal. One hemisphere of the brain was flash-frozen for cytokine analysis, and the other was fixed for immunohistochemical analysis. The ionized calcium-binding adapter molecule 1 (Iba-1) was used to evaluate microglia activation at the three time points, and rat cytokine/chemokine Magnetic Bead Panels (Millipore) were used to analyze frontal cortex tissue lysate and serum. Ethanol induced a significant increase in Iba-1 that peaked at day 35, remained significant after 1 day of withdrawal, and was elevated at day 28 in frontal cortex, amygdala, and substantia nigra. Ethanol exposure was associated with a transient reduction of the serum level of the major pro- and anti-inflammatory cytokines and chemokines and a transient increase of effectors of sterile inflammation. Little or no changes in these molecules were seen in the frontal cortex except for HMG1 and fractalkine that were reduced and elevated, respectively, at day 28 following withdrawal. These data show that ethanol exposure produces robust microglial activation; however, measures of inflammation in the blood differ from those in the brain over a protracted time course.


Subject(s)
Cytokines/metabolism , Ethanol/pharmacology , Frontal Lobe/metabolism , Microglia/drug effects , Substance Withdrawal Syndrome/metabolism , Animals , Calcium-Binding Proteins/metabolism , Cytokines/blood , Male , Microfilament Proteins/metabolism , Rats , Substance Withdrawal Syndrome/blood , Time Factors
4.
Int J Psychophysiol ; 103: 53-61, 2016 05.
Article in English | MEDLINE | ID: mdl-25660307

ABSTRACT

The cholinergic system in the brain is involved in attentional processes that are engaged for the identification and selection of relevant information in the environment and the formation of new stimulus associations. In the present study we determined the effects of cholinergic lesions of nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs) generated in an auditory active discrimination task in rats. Rats were trained to press a lever to begin a series of 1kHz tones and to release the lever upon hearing a 2kHz tone. A time-frequency based representation was used to determine ERO energy and phase synchronization (phase lock index, PLI) across trials, recorded within frontal cortical structures. Lesions in NBM produced by an infusion of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) resulted in (1) a reduction of the number of correct behavioral responses in the active discrimination task, (2) an increase in ERO energy in the delta frequency bands, (3) an increase in theta, alpha and beta ERO energy in the N1, P3a and P3b regions of interest (ROI), and (4) an increase in PLI in the theta frequency band in the N1 ROIs. These studies suggest that the NBM cholinergic system is involved in maintaining the synchronization/phase resetting of oscillations in different frequencies in response to the presentation of the target stimuli in an active discrimination task.


Subject(s)
Auditory Perception/physiology , Basal Nucleus of Meynert/injuries , Basal Nucleus of Meynert/physiology , Brain Injuries/physiopathology , Discrimination, Psychological/physiology , Evoked Potentials, Auditory/physiology , Frontal Lobe/physiopathology , Acoustic Stimulation , Algorithms , Animals , Brain Injuries/pathology , Choline O-Acetyltransferase/metabolism , Electroencephalography , Frontal Lobe/enzymology , Male , Multivariate Analysis , Rats , Rats, Wistar , Spectrum Analysis
5.
Brain Res ; 1559: 11-25, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24594019

ABSTRACT

The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time-frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx-Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC-Amyg and Fctx-DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area.


Subject(s)
Acetylcholine/metabolism , Basal Nucleus of Meynert/physiology , Brain Waves/physiology , Brain/physiology , Evoked Potentials, Auditory/physiology , Septal Nuclei/physiology , Acoustic Stimulation , Amygdala/physiology , Animals , Auditory Perception/physiology , Basal Nucleus of Meynert/physiopathology , Cholinergic Neurons/physiology , Electrodes, Implanted , Electroencephalography , Frontal Lobe/physiology , Hippocampus/physiology , Neural Pathways , Rats , Septal Nuclei/physiopathology
6.
J Biol Chem ; 288(15): 10722-35, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23457303

ABSTRACT

Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.


Subject(s)
Energy Metabolism/physiology , Hypothalamus/metabolism , Insulin Resistance/physiology , Insulin/metabolism , Nerve Tissue Proteins/metabolism , Sirtuin 1/metabolism , Animals , Cells, Cultured , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Glucose/genetics , Glucose/metabolism , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Insulin/genetics , Insulin/pharmacology , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Organ Specificity , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Sirtuin 1/genetics
7.
J Clin Invest ; 122(7): 2444-53, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22653059

ABSTRACT

Obesity-induced inflammation is a key component of systemic insulin resistance, which is a hallmark of type 2 diabetes. A major driver of this inflammation/insulin resistance syndrome is the accumulation of proinflammatory macrophages in adipose tissue and liver. We found that the orphan GPCR Gpr21 was highly expressed in the hypothalamus and macrophages of mice and that whole-body KO of this receptor led to a robust improvement in glucose tolerance and systemic insulin sensitivity and a modest lean phenotype. The improvement in insulin sensitivity in the high-fat diet-fed (HFD-fed) Gpr21 KO mouse was traced to a marked reduction in tissue inflammation caused by decreased chemotaxis of Gpr21 KO macrophages into adipose tissue and liver. Furthermore, mice lacking macrophage expression of Gpr21 were protected from HFD-induced inflammation and displayed improved insulin sensitivity. Results of in vitro chemotaxis studies in human monocytes suggested that the defect in chemotaxis observed ex vivo and in vivo in mice is also translatable to humans. Cumulatively, our data indicate that GPR21 has a critical function in coordinating macrophage proinflammatory activity in the context of obesity-induced insulin resistance.


Subject(s)
Diet, High-Fat/adverse effects , Insulin Resistance , Obesity/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Bone Marrow Transplantation , Eating , Energy Metabolism , Epididymis/metabolism , Gene Expression Profiling , Glucose/metabolism , Hypothalamus/metabolism , Inflammation Mediators/metabolism , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Liver/metabolism , Macrophages , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/pathology , Phenotype , Real-Time Polymerase Chain Reaction , Receptors, G-Protein-Coupled/metabolism , Sequence Deletion , Transcription, Genetic , Weight Gain
8.
Diabetes ; 59(1): 43-50, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19846801

ABSTRACT

OBJECTIVE: Temperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT). RESEARCH DESIGN AND METHODS: The effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[(18)F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor-positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. RESULTS: Injection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor-expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3-kinase inhibitor. CONCLUSIONS: Our findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus.


Subject(s)
Body Temperature/physiology , Hyperthermia, Induced/methods , Insulin/pharmacology , Neurons/physiology , Adipose Tissue, Brown/physiology , Animals , Body Temperature/drug effects , Hypothalamus/drug effects , Hypothalamus/physiology , Injections , Insulin/administration & dosage , Male , Mice , Mice, Inbred C57BL , Preoptic Area/drug effects , Preoptic Area/physiology , Telemetry
9.
J Neuroimmunol ; 214(1-2): 43-54, 2009 Sep 29.
Article in English | MEDLINE | ID: mdl-19640592

ABSTRACT

The cytokine IL-18 acts on the CNS both in physiological and pathological conditions. Its action occurs through the heterodimeric receptor IL-18Ralpha\beta. To better understand IL-18 central effects, we investigated in the mouse brain the distribution of two IL-18Ralpha transcripts, a full length and an isoform lacking the intracellular domain hypothesized to be a decoy receptor. Both isoforms were expressed in neurons throughout the brain primarily with overlapping distribution but also with some unique pattern. These data suggest that IL-18 may modulate neuronal functions and that its action may be regulated through expression of a decoy receptor.


Subject(s)
Brain/metabolism , Interleukin-18 Receptor alpha Subunit/metabolism , Interleukin-18/metabolism , Alternative Splicing , Animals , Brain/immunology , Cerebellum/metabolism , Cerebral Cortex/metabolism , Exons , Hippocampus/metabolism , Hypothalamus/metabolism , Immunohistochemistry , In Situ Hybridization , Interleukin-18/immunology , Interleukin-18 Receptor alpha Subunit/immunology , Interleukin-18 Receptor beta Subunit/metabolism , Introns , Mice , Mice, Inbred C57BL , Protein Isoforms , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL