Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Orphanet J Rare Dis ; 17(1): 423, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471344

ABSTRACT

BACKGROUND: Nonketotic hyperglycinemia (NKH) is a severe neurometabolic disorder characterized by increased glycine levels. Current glycine reduction therapy uses high doses of sodium benzoate. The ketogenic diet (KD) may represent an alternative method of glycine reduction. AIM: We aimed to assess clinical and biochemical effects of two glycine reduction strategies: high dose benzoate versus KD with low dose benzoate. METHODS: Six infants with NKH were first treated with high dose benzoate therapy to achieve target plasma glycine levels, and then switched to KD with low dose benzoate. They were evaluated as clinically indicated by physical examination, electroencephalogram, plasma and cerebral spinal fluid amino acid levels. Brain glycine levels were monitored by magnetic resonance spectroscopy (MRS). RESULTS: Average plasma glycine levels were significantly lower with KD compared to benzoate monotherapy by on average 28%. Two infants underwent comparative assessments of brain glycine levels via serial MRS. A 30% reduction of brain glycine levels was observed in the basal ganglia and a 50% reduction in the white matter, which remained elevated above normal, and was equivalent between the KD and high dose benzoate therapies. CSF analysis obtained while participants remained on the KD showed a decrease in glycine, serine and threonine levels, reflecting their gluconeogenetic usage. Clinically, half the patients had seizure reduction on KD, otherwise the clinical impact was variable. CONCLUSION: KD is an effective glycine reduction method in NKH, and may provide a more consistent reduction in plasma glycine levels than high-dose benzoate therapy. Both high-dose benzoate therapy and KD equally reduced but did not normalize brain glycine levels even in the setting of low-normal plasma glycine.


Subject(s)
Diet, Ketogenic , Hyperglycinemia, Nonketotic , Infant , Humans , Hyperglycinemia, Nonketotic/drug therapy , Hyperglycinemia, Nonketotic/diagnosis , Glycine/therapeutic use , Glycine/metabolism , Brain/metabolism , Benzoates/metabolism , Benzoates/therapeutic use
2.
Mol Genet Metab ; 129(3): 236-242, 2020 03.
Article in English | MEDLINE | ID: mdl-31917109

ABSTRACT

Disorders of the white matter are genetically very heterogeneous including several genes involved in mitochondrial bioenergetics. Diagnosis of the underlying cause is aided by pattern recognition on neuroimaging and by next-generation sequencing. Recently, genetic changes in the complex I assembly factor NUBPL have been characterized by a consistent recognizable pattern of leukoencephalopathy affecting deep white matter including the corpus callosum and cerebellum. Here, we report twin boys with biallelic variants in NUBPL, an unreported c.351 G > A; p.(Met117Ile) and a previously reported pathological variant c. 693 + 1 G > A. Brain magnetic resonance imaging showed abnormal T2 hyperintense signal involving the periventricular white matter, external capsule, corpus callosum, and, prominently, the bilateral thalami. The neuroimaging pattern evolved over 18 months with marked diffuse white matter signal abnormality, volume loss, and new areas of signal abnormality in the cerebellar folia and vermis. Magnetic resonance spectroscopy showed elevated lactate. Functional studies in cultured fibroblasts confirmed pathogenicity of the genetic variants. Complex I activity of the respiratory chain was deficient spectrophotometrically and on blue native gel with in-gel activity staining. There was absent assembly and loss of proteins of the matrix arm of complex I when traced with an antibody to NDUFS2, and incomplete assembly of the membrane arm when traced with an NDUFB6 antibody. There was decreased NUBPL protein on Western blot in patient fibroblasts compared to controls. Compromised NUBPL activity impairs assembly of the matrix arm of complex I and produces a severe, rapidly-progressive leukoencephalopathy with thalamic involvement on MRI, further expanding the neuroimaging phenotype.


Subject(s)
Diseases in Twins/genetics , Electron Transport Complex I/metabolism , Leukoencephalopathies/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Thalamus/diagnostic imaging , Cell Line , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Diseases in Twins/diagnostic imaging , Diseases in Twins/metabolism , Diseases in Twins/physiopathology , Electron Transport Complex I/deficiency , Electron Transport Complex I/genetics , External Capsule/diagnostic imaging , External Capsule/pathology , Eye/physiopathology , Fibroblasts/metabolism , Humans , Infant , Lactic Acid/metabolism , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/metabolism , Leukoencephalopathies/physiopathology , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Mitochondria/genetics , Mitochondrial Proteins/metabolism , Mutation , NADH Dehydrogenase/metabolism , Twins, Monozygotic/genetics , White Matter/diagnostic imaging , White Matter/pathology , Exome Sequencing
3.
Pediatr Neurol ; 35(5): 323-6, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17074602

ABSTRACT

Forty-three children less than 12 years of age having intractable seizures were treated with vagus nerve stimulation. Five children were monitored for <12 months, 16 children for 12 to 17 months, and 22 children for > or =18 months with overall median seizure reduction of 55%. Thirty-seven percent had at least 90% reduction. Vagus nerve stimulation was effective in children with generalized, mixed, and partial medically refractory seizures.


Subject(s)
Electric Stimulation Therapy , Epilepsy/therapy , Vagus Nerve , Age Factors , Child , Electrodes, Implanted , Female , Follow-Up Studies , Humans , Male , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL