Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
3 Biotech ; 12(1): 19, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34926123

ABSTRACT

Erythrina velutina is a species of arboreal leguminous that occurs spontaneously in the northeastern states of Brazil. Leguminous seeds represent an abundant source of peptidase inhibitors, which play an important role in controlling peptidases involved in essential biological processes. The aim of this study was to purify and characterize a novel Kunitz-type peptidase inhibitor from Erythrina velutina seeds and evaluate its anti-proliferative effects against cancer cell lines. The Kunitz-type chymotrypsin inhibitor was purified from Erythrina velutina seeds (EvCI) by ammonium sulphate fractionation, trypsin- and chymotrypsin-sepharose affinity chromatographies and Resource Q anion-exchange column. The purified EvCI has a molecular mass of 18 kDa with homology to a Kunitz-type inhibitor. Inhibition assays revealed that EvCI is a competitive inhibitor of chymotrypsin (with K i of 4 × 10-8 M), with weak inhibitory activity against human elastase and without inhibition against trypsin, elastase, bromelain or papain. In addition, the inhibitory activity of EvCI was stable over a wide range of pH and temperature. Disulfide bridges are involved in stabilization of the reactive site in EvCI, since the reduction of disulfide bridges with DTT 100 mM abolished ~ 50% of its inhibitory activity. The inhibitor exhibited selective anti-proliferative properties against HeLa cells. The incubation of EvCI with HeLa cells triggered arrest in the cell cycle, suggesting that apoptosis is the mechanism of death induced by the inhibitor. EvCI constitutes an interesting anti-carcinogenic candidate for conventional cervical cancer treatments employed currently. The EvCI cytostatic effect on Hela cells indicates a promised compound to be used as anti-carcinogenic complement for conventional cervical treatments employed currently.

2.
Food Chem Toxicol ; 135: 110946, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31712106

ABSTRACT

This study investigated the inhibitory activity of serine protease, as well as antibacterial and antibiotic modifying activities of the crude extract and fractions of A. cearensis seeds. Microdilution assay was used to evaluate the antibacterial activity and the antibiotic resistance-modulating effects of samples against multiresistant bacteria Staphylococcus aureus (SA10) and Escherichia coli (EC06). In the inhibition test for serine protease, all the samples showed inhibition of enzymatic activity. Crude extract and fractions of A. cearensis seeds showed a Minimum Inhibitory Concentration ≥1024 µg/mL for all microorganisms tested. However, the samples acted as resistance modifying agent, presenting synergism when associated with gentamicin, norfloxacin and penicillin. The present study provides data indicating a possible use of the seeds extract of A. cearensis in association with antibiotics in the fight against bacterial infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fabaceae/chemistry , Plant Extracts/pharmacology , Serine Proteinase Inhibitors/pharmacology , Anti-Bacterial Agents/isolation & purification , Escherichia coli/drug effects , Microbial Sensitivity Tests , Plant Extracts/isolation & purification , Seeds/chemistry , Serine Proteinase Inhibitors/isolation & purification , Staphylococcus aureus/drug effects
3.
J Enzyme Inhib Med Chem ; 31(6): 1261-9, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26928305

ABSTRACT

Ingestion of peanuts may have a beneficial effect on weight control, possibly due to the satietogenic action of trypsin inhibitors. The aim of this study was to isolate a new trypsin inhibitor in a typical Brazilian peanut sweet (paçoca) and evaluate its effect in biochemical parameters, weight gain and food intake in male Wistar rats. The trypsin inhibitor in peanut paçoca (AHTI) was isolated. Experimental diets were prepared with AIN-93G supplemented with AHTI. Animals had their weight and food intake monitored. Animals were anesthetized, euthanized, and their bloods collected by cardiac puncture for dosage of cholecystokinin (CCK) and other biochemical parameters. Supplementation with AHTI significantly decreased fasting glucose, body weight gain, and food intake. These effects may be attributed to increased satiety, once supplemented animals showed no evidence of impaired nutritional status and also because AHTI increased CCK production. Thus, our results indicate that AHTI, besides reducing fasting glucose, can reduce weight gain via food intake reduction.


Subject(s)
Arachis/chemistry , Blood Glucose/metabolism , Body Weight , Cholecystokinin/blood , Dietary Supplements , Fasting , Models, Animal , Trypsin Inhibitors/administration & dosage , Animals , Cholecystokinin/metabolism , Male , Rats , Rats, Wistar
4.
Plant Foods Hum Nutr ; 70(3): 338-43, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26243664

ABSTRACT

Linseed (Linun usitatissimum L.) is an important oilseed whose nutritional value can be impaired due to presence of antinutritional factors and low protein digestibility. Protein fractions from raw linseed meal were extracted, isolated and analyzed in vitro and in vivo. Globulins, the major protein fraction of linseed, showed low in vitro susceptibility to trypsin and chymotrypsin, but its in vivo digestibility was 93.2 %. Albumin fraction had high trypsin inhibition activity (5250 Inhibition Units g(-1)) and presented low molecular mass protein bands, similar to known trypsin inhibitors. Raw linseed consumption caused negative effects on rat growth and reduction of intestinal villi. Results indicate that raw linseed meal must not be used as an exclusive source of protein regardless of the major proteins have high digestibility; digestive enzymes inhibitors in raw linseed probably reduces the protein utilization.


Subject(s)
Dietary Proteins/pharmacology , Digestion , Flax/chemistry , Growth/drug effects , Plant Proteins/pharmacology , Trypsin Inhibitors/adverse effects , Trypsin/metabolism , Animals , Biological Availability , Chymotrypsin/metabolism , Dietary Proteins/metabolism , Humans , Intestines/drug effects , Male , Molecular Weight , Nutritive Value , Plant Extracts , Plant Proteins/metabolism , Rats, Wistar , Seeds/chemistry
5.
PLoS One ; 8(5): e63571, 2013.
Article in English | MEDLINE | ID: mdl-23737945

ABSTRACT

Inhibitors of peptidases isolated from leguminous seeds have been studied for their pharmacological properties. The present study focused on purification, biochemical characterization and anti-inflammatory and anticoagulant evaluation of a novel Kunitz trypsin inhibitor from Erythrina velutina seeds (EvTI). Trypsin inhibitors were purified by ammonium sulfate (30-60%), fractionation followed by Trypsin-Sepharose affinity chromatography and reversed-phase high performance liquid chromatography. The purified inhibitor showed molecular mass of 19,210.48 Da. Furthermore, a second isoform with 19,228.16 Da was also observed. The inhibitor that showed highest trypsin specificity and enhanced recovery yield was named EvTI (P2) and was selected for further analysis. The EvTI peptide fragments, generated by trypsin and pepsin digestion, were further analyzed by MALDI-ToF-ToF mass spectrometry, allowing a partial primary structure elucidation. EvTI exhibited inhibitory activity against trypsin with IC50 of 2.2×10(-8) mol.L(-1) and constant inhibition (Ki) of 1.0×10(-8) mol.L(-1), by a non-competitive mechanism. In addition to inhibit the activity of trypsin, EvTI also inhibited factor Xa and neutrophil elastase, but do not inhibit thrombin, chymotrypsin or peptidase 3. EvTI was investigated for its anti-inflammatory and anti-coagulant properties. Firstly, EvTI showed no cytotoxic effect on human peripheral blood cells. Nevertheless, the inhibitor was able to prolong the clotting time in a dose-dependent manner by using in vitro and in vivo models. Due to anti-inflammatory and anticoagulant EvTI properties, two sepsis models were here challenged. EvTI inhibited leukocyte migration and specifically acted by inhibiting TNF-α release and stimulating IFN-α and IL-12 synthesis. The data presented clearly contribute to a better understanding of the use of Kunitz inhibitors in sepsis as a bioactive agent capable of interfering in blood coagulation and inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anticoagulants/pharmacology , Erythrina/chemistry , Peptides/pharmacology , Plant Proteins/pharmacology , Seeds/chemistry , Trypsin Inhibitors/pharmacology , Amino Acid Sequence , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Cell Movement/drug effects , Chromatography, Affinity , Cytokines/metabolism , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Humans , Hydrogen-Ion Concentration , Leukocyte Count , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Sequence Data , Peptides/chemistry , Peptides/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Protein Stability , Sepsis/drug therapy , Sepsis/immunology , Sequence Homology, Amino Acid , Substrate Specificity , Trypsin/chemistry , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification
6.
Plant Physiol Biochem ; 63: 70-6, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23238511

ABSTRACT

Pithecellobium dumosum is a tree belonging to the Mimosoideae subfamily that presents various previously characterized Kunitz-type inhibitors. The present study provides a novel Kunitz-trypsin inhibitor isoform purified from P. dumosum seeds. Purification procedure was performed by TCA precipitation followed by a trypsin-Sepharose chromatography and a further reversed-phase HPLC. Purified inhibitor (PdKI-4) showed enhanced inhibitory activity against bovine trypsin and chymotrypsin. Furthermore, PdKI-4 showed remarkable inhibitory activity against serine proteases from the coleopterans Callosobruchus maculatus and Zabrotes subfasciatus, and the lepidopterans Alabama argillacea and Telchin licus. However, PdKI-4 was unable to inhibit porcine pancreatic elastase, pineapple bromelain and Carica papaya papain. SDS-PAGE showed that PdKI-4 consisted of a single polypeptide chain with molecular mass of 21 kDa. Kinetic studies demonstrated that PdKI-4 is probably a competitive inhibitor with a Ki value of 5.7 × 10(-10) M for bovine trypsin. PdKI-4 also showed higher stability over a wide range of temperature (37-100 °C) and pH (2-12). N-termini sequence was obtained by Edman degradation showing higher identity with other Mimosoideae subfamily Kunitz-type inhibitor members. In summary, data here reported indicate the biotechnological potential of PdKI-4 for development of products against insect-pests.


Subject(s)
Enzyme Inhibitors/pharmacology , Fabaceae/chemistry , Insecta/enzymology , Peptide Hydrolases/metabolism , Peptides/pharmacology , Plant Proteins/pharmacology , Seeds/chemistry , Animals , Enzyme Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL