Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Metab Brain Dis ; 35(2): 295-303, 2020 02.
Article in English | MEDLINE | ID: mdl-31828693

ABSTRACT

Tyrosinemia type II is an autosomal recessive inborn error of metabolism caused by hepatic cytosolic tyrosine aminotransferase deficiency. Importantly, this disease is associated with neurological and developmental abnormalities in many patients. Considering that the mechanisms underlying neurological dysfunction in hypertyrosinemic patients are poorly understood, in the present work we investigated the levels of cytokines - tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-10 - in cerebellum, hippocampus, striatum of young rats exposed to chronic administration of L-tyrosine. In addition, we also investigated the impact of the supplementation with Omega-3 fatty acids (n-3 PUFA) on the rodent model of Tyrosinemia. Notably, previous study demonstrated an association between L-tyrosine toxicity and n-3 PUFA deficiency. Our results showed a significant increase in the levels of pro- and anti-inflammatory cytokines in brain structures when animals were administered with L-tyrosine. Cerebral cortex and striatum seem to be more susceptible to the inflammation induced by tyrosine toxicity. Importantly, n-3 PUFA supplementation attenuated the alterations on cytokines levels induced by tyrosine exposure in brain regions of infant rats. In conclusion, the brain inflammation is also an important process related to tyrosine neurotoxicity observed in the experimental model of Tyrosinemia. Finally, n-3 PUFA supplementation could be considered as a potential neuroprotective adjunctive therapy for Tyrosinemias, especially type II.


Subject(s)
Dietary Supplements , Encephalitis/chemically induced , Encephalitis/drug therapy , Fatty Acids, Omega-3/administration & dosage , Inflammation Mediators/antagonists & inhibitors , Tyrosine/toxicity , Animals , Animals, Newborn , Drug Administration Schedule , Encephalitis/metabolism , Inflammation Mediators/metabolism , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar , Tyrosine/administration & dosage
2.
Metab Brain Dis ; 34(4): 1207-1219, 2019 08.
Article in English | MEDLINE | ID: mdl-30949952

ABSTRACT

Deficiency of hepatic enzyme tyrosine aminotransferase characterizes the innate error of autosomal recessive disease Tyrosinemia Type II. Patients may develop neurological and developmental difficulties due to high levels of the amino acid tyrosine in the body. Mechanisms underlying the neurological dysfunction in patients are poorly known. Importantly, Tyrosinemia patients have deficient Omega-3 fatty acids (n-3 PUFA). Here, we investigated the possible neuroprotective effect of the treatment with n-3 PUFA in the alterations caused by chronic administration of L-tyrosine on important parameters of energetic metabolism and oxidative stress in the hippocampus, striatum and cerebral cortex of developing rats. Chronic administration of L-tyrosine causes a decrease in the citrate synthase (CS) activity in the hippocampus and cerebral cortex, as well as in the succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) activities, and an increase in the α-ketoglutarate dehydrogenase activity in the hippocampus. Moreover, in the striatum, L-tyrosine administration caused a decrease in the activities of CS, SDH, creatine kinase, and complexes I, II-III and IV of the mitochondrial respiratory chain. We also observed that the high levels of L-tyrosine are related to oxidative stress in the brain. Notably, supplementation of n-3 PUFA prevented the majority of the modifications caused by the chronic administration of L-tyrosine in the cerebral enzyme activities, as well as ameliorated the oxidative stress in the brain regions of rats. These results indicate a possible neuroprotective and antioxidant role for n-3 PUFA and may represent a new therapeutic approach and potential adjuvant therapy to Tyrosinemia Type II individuals.


Subject(s)
Brain/drug effects , Energy Metabolism/drug effects , Fatty Acids, Omega-3/pharmacology , Mitochondria/drug effects , Oxidative Stress/drug effects , Tyrosine/pharmacology , Animals , Aromatase/metabolism , Brain/metabolism , Male , Mitochondria/metabolism , Rats , Rats, Wistar
3.
Biochim Biophys Acta Mol Basis Dis ; 1864(2): 454-463, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29079519

ABSTRACT

During chronic limb ischemia, oxidative damage and inflammation are described. Besides oxidative damage, the decrease of tissue oxygen levels is followed by several adaptive responses. The purpose of this study was to determine whether supplementation with N-acetylcysteine (NAC) is effective in an animal model of chronic limb ischemia. Chronic limb ischemia was induced and animals were treated once a day for 30 consecutive days with NAC (30mg/kg). After this time clinical scores were recorded and soleus muscle was isolated and lactate levels, oxidative damage and inflammatory parameters were determined. In addition, several mechanisms associated with hypoxia adaptation were measured (vascular endothelial growth factor - VEGF and hypoxia inducible factor - HIF levels, ex vivo oxygen consumption, markers of autophagy/mitophagy, and mitochondrial biogenesis). The adaptation to chronic ischemia in this model included an increase in muscle VEGF and HIF levels, and NAC was able to decrease VEGF, but not HIF levels. In addition, ex vivo oxygen consumption under hypoxia was increased in muscle from ischemic animals, and NAC was able to decrease this parameter. This effect was not mediated by a direct effect of NAC on oxygen consumption. Ischemia was followed by a significant increase in muscle myeloperoxidase activity, as well as interleukin-6 and thiobarbituric acid reactive substances species levels. Supplementation with NAC was able to attenuate inflammatory and oxidative damage parameters, and improve clinical scores. In conclusion, NAC treatment decreases oxidative damage and inflammation, and modulates oxygen consumption under hypoxic conditions in a model of chronic limb ischemia.


Subject(s)
Acetylcysteine/pharmacology , Hindlimb/pathology , Ischemia/drug therapy , Animals , Disease Models, Animal , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation , Interleukin-6/metabolism , Ischemia/metabolism , Lactic Acid/metabolism , Male , Muscle, Skeletal/metabolism , Nitrates/metabolism , Nitrites/metabolism , Oxidative Stress , Oxygen/chemistry , Oxygen/metabolism , Oxygen Consumption , Peroxidase/metabolism , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances , Vascular Endothelial Growth Factor A/metabolism
4.
Mol Cell Biochem ; 435(1-2): 207-214, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28547180

ABSTRACT

Tyrosine levels are abnormally elevated in tissues and body fluids of patients with inborn errors of tyrosine metabolism. Tyrosinemia type II, which is caused by tyrosine aminotransferase deficiency, provokes eyes, skin, and central nervous system disturbances in affected patients. However, the mechanisms of brain damage are still poorly known. Considering that studies have demonstrated that oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia, in the present study we investigated the effects of antioxidant treatment (NAC and DFX) on DNA damage and oxidative stress markers induced by chronic administration of L-tyrosine in cerebral cortex, hippocampus, and striatum of rats. The results showed elevated levels of DNA migration, and thus DNA damage, after chronic administration of L-tyrosine in all the analyzed brain areas, and that the antioxidant treatment was able to prevent DNA damage in cerebral cortex and hippocampus. However, the co-administration of NAC plus DFX did not prevent the DNA damage in the striatum. Moreover, we found a significant increase in thiobarbituric acid-reactive substances (TBA-RS) and DCFH oxidation in cerebral cortex, as well as an increase in nitrate/nitrite levels in the hippocampus and striatum. Additionally, the antioxidant treatment was able to prevent the increase in TBA-RS levels and in nitrate/nitrite levels, but not the DCFH oxidation. In conclusion, our findings suggest that reactive oxygen and nitrogen species and oxidative stress can play a role in DNA damage in this disorder. Moreover, NAC/DFX supplementation to tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the current treatment of this disease.


Subject(s)
Antioxidants/pharmacology , Brain/metabolism , DNA Damage , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Tyrosine , Tyrosinemias , Animals , Brain/pathology , Male , Rats , Rats, Wistar , Tyrosine/adverse effects , Tyrosine/pharmacology , Tyrosinemias/chemically induced , Tyrosinemias/drug therapy , Tyrosinemias/metabolism , Tyrosinemias/pathology
5.
Metab Brain Dis ; 32(4): 1043-1050, 2017 08.
Article in English | MEDLINE | ID: mdl-28315992

ABSTRACT

Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.


Subject(s)
Antioxidants/pharmacology , Brain/drug effects , DNA Damage/drug effects , Fatty Acids, Omega-3/pharmacology , Tyrosinemias/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Tyrosine , Tyrosinemias/chemically induced
6.
Mol Neurobiol ; 54(6): 3935-3947, 2017 08.
Article in English | MEDLINE | ID: mdl-27246566

ABSTRACT

Studies have shown that changes in energy metabolism are involved in the pathophysiology of bipolar disorder (BD). It was suggested that omega-3 (ω3) fatty acids have beneficial properties in the central nervous system and that this fatty acid plays an important role in energy metabolism. Therefore, the study aimed to evaluate the effect of ω3 fatty acids alone and in combination with lithium (Li) or valproate (VPA) on behaviour and parameters of energy metabolism in an animal model of mania induced by fenproporex. Our results showed that co-administration of ω3 fatty acids and Li was able to prevent and reverse the increase in locomotor and exploratory activity induced by fenproporex. The combination of ω3 fatty acids with VPA was only able to prevent the fenproporex-induced hyperactivity. For the energy metabolism parameters, our results showed that the administration of Fen for the reversal or prevention protocol inhibited the activities of succinate dehydrogenase, complex II and complex IV in the hippocampus. However, hippocampal creatine kinase (CK) activity was decreased only for the reversal protocol. The ω3 fatty acids, alone and in combination with VPA or Li, prevented and reversed the decrease in complex II, IV and succinate dehydrogenase activity, whereas the decrease in CK activity was only reversed after the co-administration of ω3 fatty acids and VPA. In conclusion, our results showed that the ω3 fatty acids combined with VPA or Li were able to prevent and reverse manic-like hyperactivity and the inhibition of energy metabolism in the hippocampus, suggesting that ω3 fatty acids may play an important role in the modulation of behavioural parameters and energy metabolism.


Subject(s)
Antimanic Agents/therapeutic use , Behavior, Animal , Bipolar Disorder/drug therapy , Bipolar Disorder/metabolism , Energy Metabolism/drug effects , Fatty Acids, Omega-3/therapeutic use , Amphetamines , Animals , Antimanic Agents/pharmacology , Bipolar Disorder/chemically induced , Bipolar Disorder/genetics , Citrate (si)-Synthase/metabolism , Creatine Kinase/metabolism , Disease Models, Animal , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/pharmacology , Gene Expression Regulation/drug effects , Lithium/administration & dosage , Lithium/pharmacology , Lithium/therapeutic use , Male , Rats, Wistar , Succinate Dehydrogenase/metabolism , Valproic Acid/administration & dosage , Valproic Acid/pharmacology , Valproic Acid/therapeutic use
7.
Metab Brain Dis ; 32(2): 519-528, 2017 04.
Article in English | MEDLINE | ID: mdl-27987060

ABSTRACT

Studies have shown that oxidative stress is involved in the pathophysiology of bipolar disorder (BD). It is suggested that omega-3 (ω3) fatty acids are fundamental to maintaining the functional integrity of the central nervous system. The animal model used in this study displayed fenproporex-induced hyperactivity, a symptom similar to manic BD. Our results showed that the administration of fenproporex, in the prevent treatment protocol, increased lipid peroxidation in the prefrontal cortex (143%), hippocampus (58%) and striatum (181%), and ω3 fatty acids alone prevented this change in the prefrontal cortex and hippocampus, whereas the co-administration of ω3 fatty acids with VPA prevented the lipoperoxidation in all analyzed brain areas, and the co-administration of ω3 fatty acids with Li prevented this increase only in the prefrontal cortex and striatum. Moreover, superoxide dismutase (SOD) activity was decreased in the striatum (54%) in the prevention treatment, and the administration of ω3 fatty acids alone or in combination with Li and VPA partially prevented this inhibition. On the other hand, in the reversal treatment protocol, the administration of fenproporex increased carbonyl content in the prefrontal cortex (25%), hippocampus (114%) and striatum (91%), and in prefrontal coxter the administration of ω3 fatty acids alone or in combination with Li and VPA reversed this change, whereas in the hippocampus and striatum only ω3 fatty acids alone or in combination with VPA reversed this effect. Additionally, the administration of fenproporex resulted in a marked increase of TBARS in the hippocampus and striatum, and ω3 fatty acids alone or in combination with Li and VPA reversed this change. Finally, fenproporex administration decreased SOD activity in the prefrontal cortex (85%), hippocampus (52%) and striatum (76%), and the ω3 fatty acids in combination with VPA reversed this change in the prefrontal cortex and striatum, while the co-administration of ω3 fatty acids with Li reversed this inhibition in the hippocampus and striatum. In conclusion, our results support other studies showing the importance of ω3 fatty acids in the brain and the potential for these fatty acids to aid in the treatment of BD.


Subject(s)
Amphetamines/toxicity , Antimanic Agents/therapeutic use , Appetite Depressants/toxicity , Behavior, Animal/drug effects , Fatty Acids, Omega-3/therapeutic use , Hyperkinesis/psychology , Oxidative Stress/drug effects , Animals , Brain Chemistry/drug effects , Hyperkinesis/chemically induced , Hyperkinesis/metabolism , Lipid Peroxidation/drug effects , Lithium Carbonate/therapeutic use , Male , Protein Carbonylation/drug effects , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Valproic Acid/therapeutic use
8.
Metab Brain Dis ; 32(2): 557-564, 2017 04.
Article in English | MEDLINE | ID: mdl-27924409

ABSTRACT

Tyrosinemia type II is a rare autosomal recessive disease caused by deficiency of hepatic tyrosine aminotransferase and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that high concentrations of tyrosine provoke mitochondrial dysfunction and oxidative stress, in the present study we investigated the in vivo influence of antioxidants (N-acetylcysteine, NAC; and deferoxamine, DFX) administration on the inhibitory effects on parameters of energy metabolism in cerebral cortex, hippocampus and striatum of rats, provoked by chronic administration of L.-tyrosine. Our results showed that chronic administration of L.-tyrosine results in a marked decrease in the activity of citrate synthase in all the analyzed structures and succinate dehydrogenase activities in hippocampus and striatum, and that antioxidants administration can prevent this inhibition in hippocampus and striatum. Moreover, chronic administration of L.-tyrosine inhibited the activity of complex I, II-III and IV in the striatum, which can be prevented by antioxidant treatment. However, the co-administration of NAC plus DFX could not prevent the inhibition of creatine kinase activity in the striatum. In conclusion, the present study demonstrates that the administration of antioxidants NAC and DFX attenuates the L.-tyrosine effects on enzymes of the Krebs cycle and the mitochondrial respiratory chain, suggesting that impairment of energy metabolism can be involved with oxidative stress. These results also indicate a possible neuroprotective role for NAC and DFX as a potential adjuvant therapy to the patients with Tyrosinemia type II.


Subject(s)
Antioxidants/pharmacology , Brain Chemistry/drug effects , Energy Metabolism/drug effects , Tyrosine/pharmacology , Acetylcysteine/pharmacology , Animals , Citrate (si)-Synthase/metabolism , Citric Acid Cycle/drug effects , Creatine Kinase/metabolism , Deferoxamine/pharmacology , Electron Transport/drug effects , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Succinate Dehydrogenase/metabolism , Tyrosinemias/drug therapy , Tyrosinemias/metabolism
9.
Metab Brain Dis ; 29(1): 185-92, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24385143

ABSTRACT

Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. Considering these evidences, the present study aimed to investigate the effects of ω3 fatty acids on locomotor behavior and oxidative stress parameters (TBARS and protein carbonyl content) in brain of rats subjected to an animal model of mania induced by fenproporex. The fenproporex treatment increased locomotor behavior in saline-treated rats under reversion and prevention model, and ω3 fatty acids prevented fenproporex-related hyperactivity. Moreover, fenproporex increased protein carbonyls in the prefrontal cortex and cerebral cortex, and the administration of ω3 fatty acids reversed this effect. Lipid peroxidation products also are increased in prefrontal cortex, striatum, hippocampus and cerebral after fenproporex administration, but ω3 fatty acids reversed this damage only in the hippocampus. On the other hand, in the prevention model, fenproporex increased carbonyl content only in the cerebral cortex, and administration of ω3 fatty acids prevented this damage. Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder.


Subject(s)
Amphetamines/toxicity , Antioxidants/therapeutic use , Behavior, Animal/drug effects , Bipolar Disorder/drug therapy , Fatty Acids, Omega-3/therapeutic use , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology , Bipolar Disorder/chemically induced , Bipolar Disorder/psychology , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Exploratory Behavior/drug effects , Fatty Acids, Omega-3/pharmacology , Hyperkinesis/chemically induced , Hyperkinesis/drug therapy , Lipid Peroxidation/drug effects , Male , Presynaptic Terminals/drug effects , Protein Carbonylation/drug effects , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/analysis
10.
Mol Neurobiol ; 49(2): 734-40, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24091827

ABSTRACT

Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Brain/metabolism , Gene Expression Regulation , RNA, Messenger/biosynthesis , Tyrosine/administration & dosage , Animals , Brain/drug effects , Drug Evaluation, Preclinical/methods , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar
11.
Mol Cell Biochem ; 361(1-2): 329-35, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22015654

ABSTRACT

The accumulation of octanoic (OA) and decanoic (DA) acids in tissue is the common finding in medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD), the most frequent defect of fatty acid oxidation. Affected patients present hypoketotic hypoglycemia, rhabdomyolysis, hepatomegaly, seizures and lethargy, which may progress to coma and death. At present, the pathophysiological mechanisms underlying hepatic and skeletal muscle alterations in affected patients are poorly known. Therefore, in the present work, we investigated the in vitro effects of OA and DA, the accumulating metabolites in MCADD, on various bioenergetics and oxidative stress parameters. It was verified that OA and DA decreased complexes I-III, II-III and IV activities in liver and also inhibit complex IV activity in skeletal muscle. In addition, DA decreased complexes II-III activity in skeletal muscle. We also verified that OA and DA increased TBA-RS levels and carbonyl content in both tissues. Finally, DA, but not OA, significantly decreased GSH levels in rat skeletal muscle. Our present data show that the medium-chain fatty acids that accumulate in MCADD impair electron transfer through respiratory chain and elicit oxidative damage in rat liver and skeletal muscle. It may be therefore presumed that these mechanisms are involved in the pathophysiology of the hepatopathy and rhabdomyolysis presented by MCADD-affected patients.


Subject(s)
Caprylates/metabolism , Decanoates/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress , Acyl-CoA Dehydrogenase/deficiency , Acyl-CoA Dehydrogenase/metabolism , Animals , Caprylates/pharmacology , Creatine Kinase/metabolism , Decanoates/pharmacology , Electron Transport , Electron Transport Complex IV/metabolism , Glutathione/metabolism , Lipid Metabolism, Inborn Errors/metabolism , Liver/drug effects , Liver/enzymology , Male , Mitochondria/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Oxidation-Reduction , Protein Carbonylation , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism
12.
Mol Cell Biochem ; 350(1-2): 149-54, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21203802

ABSTRACT

Hepatic encephalopathy is an important cause of morbidity and mortality in patients with severe hepatic failure. This disease is clinically characterized by a large variety of symptoms including motor symptoms, cognitive deficits, as well as changes in the level of alertness up to hepatic coma. Acetaminophen is frequently used in animals to produce an experimental model to study the mechanisms involved in the progression of hepatic disease. The brain is highly dependent on ATP and most cell energy is obtained through oxidative phosphorylation, a process requiring the action of various respiratory enzyme complexes located in a special structure of the inner mitochondrial membrane. In this context, the authors evaluated the activities of mitochondrial respiratory chain complexes in the brain of rats submitted to acute administration of acetaminophen and treated with the combination of N-acetylcysteine (NAC) plus deferoxamine (DFX) or taurine. These results showed that acetaminophen administration inhibited the activities of complexes I and IV in cerebral cortex and that the treatment with NAC plus DFX or taurine was not able to reverse this inhibition. The authors did not observe any effect of acetaminophen administration on complexes II and III activities in any of the structures studied. The participation of oxidative stress has been postulated in the hepatic encephalopathy and it is well known that the electron transport chain itself is vulnerable to damage by reactive oxygen species. Since there was no effect of NAC + DFX, the effect of acetaminophen was likely to be due to something else than oxidative stress.


Subject(s)
Acetaminophen , Brain/drug effects , Electron Transport/drug effects , Liver Failure/chemically induced , Mitochondria/drug effects , Acetylcysteine/pharmacology , Analgesics, Non-Narcotic , Animals , Antioxidants/pharmacology , Brain/metabolism , Brain/physiology , Deferoxamine/pharmacology , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Electron Transport/physiology , Liver Failure/metabolism , Liver Failure/physiopathology , Male , Mitochondria/metabolism , Rats , Rats, Wistar , Taurine/pharmacology
13.
Rev. bras. ter. intensiva ; 22(2): 206-211, abr.-jun. 2010.
Article in English, Portuguese | LILACS | ID: lil-553460

ABSTRACT

Em pacientes com insuficiência renal, a encefalopatia é um problema comum que pode ser provocado pela uremia, deficiência de tiamina, diálise, rejeição de transplante, hipertensão, desequilíbrios hidroeletrolíticos e toxicidades medicamentosas. Em geral a encefalopatia se apresenta como um complexo de sintomas que progride de uma leve obnubilação sensitiva até delírio e coma. Esta revisão discute questões importantes com relação aos mecanismos de base da fisiopatologia da encefalopatia urêmica. A fisiopatologia da encefalopatia urêmica é até hoje incerta, mas postula-se o envolvimento de diversos fatores; trata-se de um processo complexo e provavelmente multifatorial. Distúrbios hormonais, estresse oxidativo, acúmulo de metabólitos, desequilíbrio entre os neurotransmissores excitatórios e inibitórios, e distúrbio do metabolismo intermediário foram identificados como fatores contribuintes. A despeito do progresso continuado na terapêutica, a maior parte das complicações neurológicas da uremia, como a encefalopatia urêmica, não respondem plenamente à diálise e muitas delas são desencadeadas ou agravadas pela diálise ou transplante renal. Por outro lado, estudos prévios demonstraram que a terapia antioxidante pode ser utilizada como terapia coadjuvante para o tratamento destas complicações neurológicas.


In patients with renal failure, encephalopathy is a common problem that may be caused by uremia, thiamine deficiency, dialysis, transplant rejection, hypertension, fluid and electrolyte disturbances or drug toxicity. In general, encephalopathy presents with a symptom complex progressing from mild sensorial clouding to delirium and coma. This review discusses important issues regarding the mechanisms underlying the pathophysiology of uremic encephalopathy. The pathophysiology of uremic encephalopathy up to now is uncertain, but several factors have been postulated to be involved; it is a complex and probably multifactorial process. Hormonal disturbances, oxidative stress, accumulation of metabolites, imbalance in excitatory and inhibitory neurotransmitters, and disturbance of the intermediary metabolism have been identified as contributing factors. Despite continuous therapeutic progress, most neurological complications of uremia, like uremic encephalopathy, fail to fully respond to dialysis and many are elicited or aggravated by dialysis or renal transplantation. On the other hand, previous studies showed that antioxidant therapy could be used as an adjuvant therapy for the treatment of these neurological complications.

14.
Rev Bras Ter Intensiva ; 22(2): 206-11, 2010 Jun.
Article in English, Portuguese | MEDLINE | ID: mdl-25303764

ABSTRACT

In patients with renal failure, encephalopathy is a common problem that may be caused by uremia, thiamine deficiency, dialysis, transplant rejection, hypertension, fluid and electrolyte disturbances or drug toxicity. In general, encephalopathy presents with a symptom complex progressing from mild sensorial clouding to delirium and coma. This review discusses important issues regarding the mechanisms underlying the pathophysiology of uremic encephalopathy. The pathophysiology of uremic encephalopathy up to now is uncertain, but several factors have been postulated to be involved; it is a complex and probably multifactorial process. Hormonal disturbances, oxidative stress, accumulation of metabolites, imbalance in excitatory and inhibitory neurotransmitters, and disturbance of the intermediary metabolism have been identified as contributing factors. Despite continuous therapeutic progress, most neurological complications of uremia, like uremic encephalopathy, fail to fully respond to dialysis and many are elicited or aggravated by dialysis or renal transplantation. On the other hand, previous studies showed that antioxidant therapy could be used as an adjuvant therapy for the treatment of these neurological complications.

SELECTION OF CITATIONS
SEARCH DETAIL