Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Comput Biol Med ; 146: 105704, 2022 07.
Article in English | MEDLINE | ID: mdl-35690478

ABSTRACT

Thermophilic proteins (TPPs) are important in the field of protein biochemistry and development of new enzymes. Thus, computational methods must be urgently developed to accurately and rapidly identify TPPs. To date, several computational methods have been developed for TPP identification; however, few limitations in terms of performance and utility remain. In this study, we present a novel computational method, SAPPHIRE, to achieve more accurate identification of TPPs using only sequence information without any need for structural information. We combined twelve different feature encodings representing different perspectives and six popular machine learning algorithms to train 72 baseline models and extract the key information of TPPs. Subsequently, the informative predicted probabilities from the baseline models were mined and selected using a genetic algorithm in conjunction with a self-assessment-report approach. Finally, the final meta-predictor, SAPPHIRE, was built and optimized by applying an optimal feature set. The performance of SAPPHIRE in the 10-fold cross-validation test showed that a superior predictive performance compared with several baseline models could be achieved. Moreover, SAPPHIRE yielded an accuracy of 0.942 and Matthew's coefficient correlation of 0.884, which were 7.68 and 5.12% higher than those of the current existing methods, respectively, as indicated by the independent test. The proposed computational approach is anticipated to facilitate large-scale identification of TPPs and accelerate their applications in the food industry. The codes and datasets are available at https://github.com/plenoi/SAPPHIRE.


Subject(s)
Aluminum Oxide , Computational Biology , Algorithms , Computational Biology/methods , Machine Learning , Proteins/chemistry
2.
Cells ; 9(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-32028709

ABSTRACT

Although, existing methods have been successful in predicting phage (or bacteriophage) virion proteins (PVPs) using various types of protein features and complex classifiers, such as support vector machine and naïve Bayes, these two methods do not allow interpretability. However, the characterization and analysis of PVPs might be of great significance to understanding the molecular mechanisms of bacteriophage genetics and the development of antibacterial drugs. Hence, we herein proposed a novel method (PVPred-SCM) based on the scoring card method (SCM) in conjunction with dipeptide composition to identify and characterize PVPs. In PVPred-SCM, the propensity scores of 400 dipeptides were calculated using the statistical discrimination approach. Rigorous independent validation test showed that PVPred-SCM utilizing only dipeptide composition yielded an accuracy of 77.56%, indicating that PVPred-SCM performed well relative to the state-of-the-art method utilizing a number of protein features. Furthermore, the propensity scores of dipeptides were used to provide insights into the biochemical and biophysical properties of PVPs. Upon comparison, it was found that PVPred-SCM was superior to the existing methods considering its simplicity, interpretability, and implementation. Finally, in an effort to facilitate high-throughput prediction of PVPs, we provided a user-friendly web-server for identifying the likelihood of whether or not these sequences are PVPs. It is anticipated that PVPred-SCM will become a useful tool or at least a complementary existing method for predicting and analyzing PVPs.


Subject(s)
Bacteriophages/metabolism , Computational Biology/methods , Viral Proteins/chemistry , Virion/metabolism , Amino Acids/metabolism , Databases, Protein , Dipeptides/metabolism , Internet , Propensity Score , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL