Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
ChemMedChem ; 14(6): 615-620, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30707493

ABSTRACT

Herein we report the discovery of a novel series of highly potent and selective mitogen-activated protein kinase kinase 4 (MEK4) inhibitors. MEK4 is an upstream kinase in MAPK signaling pathways that phosphorylates p38 MAPK and JNK in response to mitogenic and cellular stress queues. MEK4 is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. Optimization of this series via structure-activity relationships and molecular modeling led to the identification of compound 6 ff (4-(6-fluoro-2H-indazol-3-yl)benzoic acid), a highly potent and selective MEK4 inhibitor. This series of inhibitors is the first of its kind in both activity and selectivity and will be useful in further defining the role of MEK4 in prostate and other cancers.


Subject(s)
Indazoles/chemical synthesis , Indazoles/pharmacology , MAP Kinase Kinase 4/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Drug Evaluation, Preclinical , Humans , Substrate Specificity
2.
J Biomol Screen ; 20(9): 1124-31, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26045196

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels function in the brain to limit neuronal excitability. Limiting the activity of these channels has been proposed as a therapy for major depressive disorder, but the critical role of HCN channels in cardiac pacemaking has limited efforts to develop therapies directed at the channel. Previous studies indicated that the function of HCN is tightly regulated by its auxiliary subunit, tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), which is not expressed in the heart. To target the function of the HCN channel in the brain without affecting the channel's function in the heart, we propose disrupting the interaction between HCN and TRIP8b. We developed a high-throughput fluorescence polarization (FP) assay to identify small molecules capable of disrupting this interaction. We used this FP assay to screen a 20,000-compound library and identified a number of active compounds. The active compounds were validated using an orthogonal AlphaScreen assay to identify one compound (0.005%) as the first confirmed hit for inhibiting the HCN-TRIP8b interaction. Identifying small molecules capable of disrupting the interaction between HCN and TRIP8b should enable the development of new research tools and small-molecule therapies that could benefit patients with depression.


Subject(s)
Antidepressive Agents/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Depressive Disorder, Major/drug therapy , Drug Evaluation, Preclinical , Escherichia coli , High-Throughput Screening Assays , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Protein Binding/drug effects , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism
3.
J Med Chem ; 58(14): 5637-48, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26098096

ABSTRACT

Activin belongs to the TGFß superfamily, which is associated with several disease conditions, including cancer-related cachexia, preterm labor with delivery, and osteoporosis. Targeting activin and its related signaling pathways holds promise as a therapeutic approach to these diseases. A small-molecule ligand-binding groove was identified in the interface between the two activin ßA subunits and was used for a virtual high-throughput in silico screening of the ZINC database to identify hits. Thirty-nine compounds without significant toxicity were tested in two well-established activin assays: FSHß transcription and HepG2 cell apoptosis. This screening workflow resulted in two lead compounds: NUCC-474 and NUCC-555. These potential activin antagonists were then shown to inhibit activin A-mediated cell proliferation in ex vivo ovary cultures. In vivo testing showed that our most potent compound (NUCC-555) caused a dose-dependent decrease in FSH levels in ovariectomized mice. The Blitz competition binding assay confirmed target binding of NUCC-555 to the activin A:ActRII that disrupts the activin A:ActRII complex's binding with ALK4-ECD-Fc in a dose-dependent manner. The NUCC-555 also specifically binds to activin A compared with other TGFß superfamily member myostatin (GDF8). These data demonstrate a new in silico-based strategy for identifying small-molecule activin antagonists. Our approach is the first to identify a first-in-class small-molecule antagonist of activin binding to ALK4, which opens a completely new approach to inhibiting the activity of TGFß receptor superfamily members. in addition, the lead compound can serve as a starting point for lead optimization toward the goal of a compound that may be effective in activin-mediated diseases.


Subject(s)
Activins/antagonists & inhibitors , High-Throughput Screening Assays , User-Computer Interface , Activins/chemistry , Activins/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Female , Follicle Stimulating Hormone/antagonists & inhibitors , Hep G2 Cells , Humans , Mice , Molecular Docking Simulation , Ovary/cytology , Ovary/drug effects , Protein Conformation , Signal Transduction/drug effects
4.
Org Biomol Chem ; 12(35): 6842-54, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25050776

ABSTRACT

A series of potent macrocyclic HIV-1 protease inhibitors have been designed and synthesized. The compounds incorporated 16- to 19-membered macrocyclic rings between a nelfinavir-like P2 ligand and a tyrosine side chain containing a hydroxyethylamine sulfonamide isostere. All cyclic inhibitors are more potent than their corresponding acyclic counterparts. Saturated derivatives showed slight reduction of potency compared to the respective unsaturated derivatives. Compound containing a 16-membered ring as the P1-P2 ligand showed the most potent enzyme inhibitory and antiviral activity.


Subject(s)
HIV Protease Inhibitors/chemistry , Nelfinavir/chemistry , Sulfonamides/chemistry , Antiviral Agents/chemical synthesis , Catalytic Domain , Cell Line , Darunavir , Drug Design , Drug Evaluation, Preclinical , HIV-1/drug effects , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tyrosine/chemistry
5.
Bioorg Med Chem Lett ; 24(6): 1532-7, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24560539

ABSTRACT

The treatment of neurodegenerative diseases is difficult because of multiple etiologies and the interplay of genetics and environment as precipitating factors. In the case of amyotrophic lateral sclerosis (ALS), we have knowledge of a handful of genes that cause disease when mutated. However, drugs to counteract the effect of genetic mutations have not yet been found. One of the causative genes, Cu, Zn-superoxide dismutase (SOD1) is responsible for about 10-15% of the genetically linked autosomal dominant disease. Our rationale was that compounds that reduce expression of the mutant protein would be beneficial to slow onset and/or disease progression. We screened candidate compounds using a cell-based in vitro assay for those that reduce mutant SOD1 (G93A) protein expression. This led to the discovery of 2-[3-iodophenyl)methylsulfanyl]-5pyridin-4-yl-1,3,4-oxadiazole, a known protein kinase inhibitor that decreases G93A-SOD1 expression in vitro and in the brain and spinal cord in vivo. However, this compound has a biphasic dose response curve and a likely toxophore which limit its therapeutic window for chronic disease such as ALS. Therefore, we designed and tested a focused library of analogs for their ability to decrease SOD1 expression in vitro. This exercise resulted in the identification of a lead compound with improved drug-like characteristics and activity. Development of small molecules that reduce the expression of etiologically relevant toxic proteins is a strategy that may also be extended to familial ALS linked to gain of function mutations in other genes.


Subject(s)
Gene Expression Regulation/drug effects , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Small Molecule Libraries/pharmacology , Superoxide Dismutase/metabolism , Animals , Cell Line , Drug Evaluation, Preclinical , Mice , Oxadiazoles/chemical synthesis , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Superoxide Dismutase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL