Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Complementary Medicines
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 56(18): 13019-13028, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36053064

ABSTRACT

The Deepwater Horizon (DWH) disaster released 3.19 million barrels of crude oil into the Gulf of Mexico (GOM) in 2010, overlapping the habitat of pelagic fish populations. Using mahi-mahi (Coryphaena hippurus)─a highly migratory marine teleost present in the GOM during the spill─as a model species, laboratory experiments demonstrate injuries to physiology and behavior following oil exposure. However, more than a decade postspill, impacts on wild populations remain unknown. To address this gap, we exposed wild mahi-mahi to crude oil or control conditions onboard a research vessel, collected fin clip samples, and tagged them with electronic tags prior to release into the GOM. We demonstrate profound effects on survival and reproduction in the wild. In addition to significant changes in gene expression profiles and predation mortality, we documented altered acceleration and habitat use in the first 8 days oil-exposed individuals were at liberty as well as a cessation of apparent spawning activity for at least 37 days. These data reveal that even a brief and low-dose exposure to crude oil impairs fitness in wild mahi-mahi. These findings offer new perspectives on the lasting impacts of the DWH blowout and provide insight about the impacts of future deep-sea oil spills.


Subject(s)
Perciformes , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Gulf of Mexico , Petroleum/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/metabolism
2.
Environ Sci Technol ; 53(23): 14001-14009, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31702903

ABSTRACT

The understanding of the detection threshold and behavioral response of fishes in response to crude oil is critical to predicting the effects of oil spills on wild fish populations. The Deepwater Horizon oil spill released approximately 4.9 million barrels of crude oil into the northern Gulf of Mexico in 2010, overlapping spatially and temporally with the habitat of many pelagic fish species. Yet, it is unknown whether highly migratory species, such as mahi-mahi (Coryphaena hippurus), might detect and avoid oil contaminated waters. We tested the ability of control and oil-exposed juvenile mahi-mahi (15-45 mm) to avoid two dilutions of crude oil in a two-channel flume. Control fish avoided the higher concentration (27.1 µg/L Σ50PAH), while oil-exposed (24 h, 18.0 µg/L Σ50PAH) conspecifics did not. Electro-olfactogram (EOG) data demonstrated that both control and oil-exposed (24 h, 14.5 µg/L Σ50PAH) juvenile mahi-mahi (27-85 mm) could detect crude oil as an olfactory cue and that oil-exposure did not affect the EOG amplitude or duration in response to oil or other cues. These results show that a brief oil exposure impairs the ability of mahi-mahi to avoid oil and suggests that this alteration likely results from injury to higher order central nervous system processing rather than impaired olfactory physiology.


Subject(s)
Perciformes , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Avoidance Learning , Embryo, Nonmammalian , Gulf of Mexico
3.
Environ Sci Technol ; 53(18): 10993-11001, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31449401

ABSTRACT

In fishes, olfactory cues evoke behavioral responses that are crucial to survival; however, the receptors, olfactory sensory neurons, are directly exposed to the environment and are susceptible to damage from aquatic contaminants. In 2010, 4.9 million barrels of crude oil were released into the northern Gulf of Mexico from the Deepwater Horizon disaster, exposing marine organisms to this environmental contaminant. We examined the ability of bicolor damselfish (Stegastes partitus), exposed to the water accommodated fraction (WAF) of crude oil, to respond to chemical alarm cue (CAC) using a two-channel flume. Control bicolor damselfish avoided CAC in the flume choice test, whereas WAF-exposed conspecifics did not. This lack of avoidance persisted following 8 days of control water conditions. We then examined the physiological response to CAC, brine shrimp rinse, bile salt, and amino acid cues using the electro-olfactogram (EOG) technique and found that WAF-exposed bicolor damselfish were less likely to detect CAC as an olfactory cue but showed no difference in EOG amplitude or duration compared to controls. These data indicate that a sublethal WAF exposure directly modifies detection and avoidance of CAC beyond the exposure period and may suggest reduced predator avoidance behavior in oil-exposed fish in the wild.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Gulf of Mexico , Smell
4.
Environ Toxicol Chem ; 36(7): 1887-1895, 2017 07.
Article in English | MEDLINE | ID: mdl-28128479

ABSTRACT

Windows of exposure to a weathered Deepwater Horizon oil sample (slick A) were examined for early life stage mahi-mahi (Coryphaena hippurus) to determine whether there are developmental periods of enhanced sensitivity during the course of a standard 96-h bioassay. Survival was assessed at 96 h following oil exposures ranging from 2 h to 96 h and targeting 3 general periods of development, namely the prehatch phase, the period surrounding hatch, and the posthatch phase. In addition, 3 different oil preparations were used: high- and low-energy water accommodated fractions of oil and very thin surface slicks of oil (∼1 µm). The latter 2 were used to distinguish between effects due to direct contact with the slick itself and the water underlying the slick. Considering the data from all 3 exposure regimes, it was determined that the period near or including hatch was likely the most sensitive. Furthermore, toxicity was not enhanced by direct contact with slick oil. These findings are environmentally relevant given that the concentrations of polycyclic aromatic hydrocarbons eliciting mortality from exposures during the sensitive periods of development were below or near concentrations measured during the active spill phase. Environ Toxicol Chem 2017;36:1887-1895. © 2016 SETAC.


Subject(s)
Perciformes/growth & development , Petroleum/analysis , Animals , Biological Assay , Life Cycle Stages/drug effects , Petroleum/toxicity , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/toxicity , Toxicity Tests , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
5.
Environ Sci Technol ; 50(14): 7842-51, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27348429

ABSTRACT

The Deepwater Horizon (DWH) oil spill contaminated the spawning habitats for numerous commercially and ecologically important fishes. Exposure to the water accommodated fraction (WAF) of oil from the spill has been shown to cause cardiac toxicity during early developmental stages across fishes. To better understand the molecular events and explore new pathways responsible for toxicity, RNA sequencing was performed in conjunction with physiological and morphological assessments to analyze the time-course (24, 48, and 96 h post fertilization (hpf)) of transcriptional and developmental responses in embryos/larvae of mahi-mahi exposed to WAF of weathered (slick) and source DWH oils. Slick oil exposure induced more pronounced changes in gene expression over time than source oil exposure. Predominant transcriptomic responses included alteration of EIF2 signaling, steroid biosynthesis, ribosome biogenesis and activation of the cytochrome P450 pathway. At 96 hpf, slick oil exposure resulted in significant perturbations in eye development and peripheral nervous system, suggesting novel targets in addition to the heart may be involved in the developmental toxicity of DHW oil. Comparisons of changes of cardiac genes with phenotypic responses were consistent with reduced heart rate and increased pericardial edema in larvae exposed to slick oil but not source oil.


Subject(s)
Larva , Petroleum/toxicity , Animals , Perciformes , Petroleum Pollution , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL