Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sleep Adv ; 4(1): zpad044, 2023.
Article in English | MEDLINE | ID: mdl-38152423

ABSTRACT

Non-rapid eye movement sleep (NREMS) is accompanied by a reduction in cerebral glucose utilization. Enabling this metabolic change may be a central function of sleep. Since the reduction in glucose metabolism is inevitably accompanied by deceleration of downstream oxidation/reduction reactions involving nicotinamide adenine dinucleotide (NAD), we hypothesized a role for NAD in regulating the homeostatic dynamics of sleep at the biochemical level. We applied dietary nicotinamide riboside (NR), a NAD precursor, in a protocol known to improve neurological outcome measures in mice. Long-term (6-10 weeks) dietary supplementation with NR reduced the time that mice spent in NREMS by 17 percent and accelerated the rate of discharge of sleep need according to a mathematical model of sleep homeostasis (Process S). These findings suggest that increasing redox capacity by increasing nicotinamide availability reduces sleep need and increases the cortical capacity for energetically demanding high-frequency oscillations. In turn, this work demonstrates the impact of redox substrates on cortical circuit properties related to fatigue and sleep drive, implicating redox reactions in the homeostatic dynamics of cortical network events across sleep-wake cycles.

2.
J Sleep Res ; 31(5): e13550, 2022 10.
Article in English | MEDLINE | ID: mdl-35060218

ABSTRACT

The aim of this study was to determine whether the multicomponent drug Neurexan could mitigate acute insomnia after exposure to a psychosocial stressor. We administered Neurexan orally to rats and examined stress-induced insomnia using the male rat dirty cage exchange method. The neurocircuitry and electrophysiological correlates of the model are characterised, and it represents various human insomnia conditions. Male rats were randomly assigned in a crossover design to six treatment groups and electroencephalography (EEG) electrodes attached. Three groups were exposed to a cage inhabited by another male rat for a week and the other three groups received a clean cage. Prior to cage change, rats were given either no drug, vehicle control or Neurexan. Non-rapid eye movement (NREM) sleep, REM sleep, and waking were assessed manually via EEG recordings. Group means were compared for sleep latency and for the 2 h after cage change for: time in each state, state-specific episode duration/frequency, in addition to NREM delta, gamma and REM theta EEG spectral power. Rats administered Neurexan fell asleep faster than vehicle-treated rats and spent less time awake with shorter, albeit more waking episodes and increased NREM episodes after dirty cage exposure. Neurexan-treated rats given dirty cages were not statistically different on any outcomes from Neurexan-treated rats given clean cages, thereby mitigating the stressor. In the EEG power spectra analysed, changes between treatment groups were not detected. This research confirms that Neurexan treatment has somnogenic effects and ameliorates psychological stressor-induced acute insomnia.


Subject(s)
Sleep Initiation and Maintenance Disorders , Animals , Cross-Over Studies , Electroencephalography , Male , Plant Extracts , Rats , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/etiology , Sleep, REM/physiology
3.
JIMD Rep ; 56(1): 58-69, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33204597

ABSTRACT

Succinic semialdehyde dehydrogenase deficiency (SSADHD) manifests with low levels of glutamine in the brain, suggesting that central glutamine deficiency contributes to pathogenesis. Recently, we attempted to rescue the disease phenotype of aldh5a1 -/- mice, a murine model of SSADHD with dietary glutamine supplementation. No clinical rescue and no central glutamine improvement were observed. Here, we report the results of follow-up studies of the cellular and molecular basis of the resistance of the brain to glutamine supplementation. We first determined if the expression of genes involved in glutamine metabolism was impacted by glutamine feeding. We then searched for changes of brain histology in response to glutamine supplementation, with a focus on astrocytes, known regulators of glutamine synthesis in the brain. Glutamine supplementation significantly modified the expression of glutaminase (gls) (0.6-fold down), glutamine synthetase (glul) (1.5-fold up), and glutamine transporters (solute carrier family 7, member 5 [slc7a5], 2.5-fold up; slc38a2, 0.6-fold down). The number of GLUL-labeled cells was greater in the glutamine-supplemented group than in controls (P < .05). Reactive astrogliosis, a hallmark of brain inflammation in SSADHD, was confirmed. We observed a 2-fold stronger astrocyte staining in mutants than in wild-type controls (optical density/cell were 1.8 ± 0.08 in aldh5a1 -/- and 0.99 ± 0.06 in aldh5a1 +/+ ; P < .0001), and a 3-fold higher expression of gfap and vimentin. However, glutamine supplementation did not improve the histological and molecular signature of astrogliosis. Thus, glutamine supplementation impacts genes implicated in central glutamine homeostasis without improving reactive astrogliosis. The mechanisms underlying glutamine deficiency and its contribution to SSADHD pathogenesis remain unknown and should be the focus of future investigations.

4.
J Inherit Metab Dis ; 42(5): 1030-1039, 2019 09.
Article in English | MEDLINE | ID: mdl-31032972

ABSTRACT

Murine succinic semialdehyde dehydrogenase deficiency (SSADHD) manifests with high concentrations of γ-aminobutyric acid (GABA) and γ-hydroxybutyrate (GHB) and low glutamine in the brain. To understand the pathogenic contribution of central glutamine deficiency, we exposed aldh5a1-/- (SSADHD) mice and their genetic controls (aldh5a1+/+ ) to either a 4% (w/w) glutamine-containing diet or a glutamine-free diet from conception until postnatal day 30. Endpoints included brain, liver and blood amino acids, brain GHB, ataxia scores, and open field testing. Glutamine supplementation did not improve aldh5a1-/- brain glutamine deficiency nor brain GABA and GHB. It decreased brain glutamate but did not change the ratio of excitatory (glutamate) to inhibitory (GABA) neurotransmitters. In contrast, glutamine supplementation significantly increased brain arginine (30% for aldh5a1+/+ and 18% for aldh5a1-/- mice), and leucine (12% and 18%). Glutamine deficiency was confirmed in the liver. The test diet increased hepatic glutamate in both genotypes, decreased glutamine in aldh5a1+/+ but not in aldh5a1-/- , but had no effect on GABA. Dried bloodspot analyses showed significantly elevated GABA in mutants (approximately 800% above controls) and decreased glutamate (approximately 25%), but no glutamine difference with controls. Glutamine supplementation did not impact blood GABA but significantly increased glutamine and glutamate in both genotypes indicating systemic exposure to dietary glutamine. Ataxia and pronounced hyperactivity were observed in aldh5a1-/- mice but remained unchanged by the diet intervention. The study suggests that glutamine supplementation improves peripheral but not central glutamine deficiency in experimental SSADHD. Future studies are needed to fully understand the pathogenic role of brain glutamine deficiency in SSADHD.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Biomarkers/blood , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Glutamine/administration & dosage , Succinate-Semialdehyde Dehydrogenase/deficiency , Amino Acid Metabolism, Inborn Errors/blood , Amino Acids/metabolism , Animals , Brain/pathology , Developmental Disabilities/blood , Dietary Supplements , Disease Models, Animal , Female , Humans , Male , Maternal Nutritional Physiological Phenomena , Mice , Mice, Inbred C57BL , Mice, Knockout , Succinate-Semialdehyde Dehydrogenase/blood , Succinate-Semialdehyde Dehydrogenase/genetics , Succinate-Semialdehyde Dehydrogenase/metabolism , gamma-Aminobutyric Acid/metabolism
5.
Pharmacol Res Perspect ; 7(1): e00456, 2019 02.
Article in English | MEDLINE | ID: mdl-30631446

ABSTRACT

Vigabatrin (VGB; (S)-(+)/(R)-(-) 4-aminohex-5-enoic acid), an antiepileptic irreversibly inactivating GABA transaminase (GABA-T), manifests use-limiting ocular toxicity. Hypothesizing that the active S enantiomer of VGB would preferentially accumulate in eye and visual cortex (VC) as one potential mechanism for ocular toxicity, we infused racemic VGB into mice via subcutaneous minipump at 35, 70, and 140 mg/kg/d (n = 6-8 animals/dose) for 12 days. VGB enantiomers, total GABA and ß-alanine (BALA), 4-guanidinobutyrate (4-GBA), and creatine were quantified by mass spectrometry in eye, brain, liver, prefrontal cortex (PFC), and VC. Plasma VGB concentrations increased linearly by dose (3 ± 0.76 (35 mg/kg/d); 15.1 ± 1.4 (70 mg/kg/d); 34.6 ± 3.2 µmol/L (140 mg/kg/d); mean ± SEM) with an S/R ratio of 0.74 ± 0.02 (n = 14). Steady state S/R ratios (35, 70 mg/kg/d doses) were highest in eye (5.5 ± 0.2; P < 0.0001), followed by VC (3.9 ± 0.4), PFC (3.6 ± 0.3), liver (2.9 ± 0.1), and brain (1.5 ± 0.1; n = 13-14 each). Total VGB content of eye exceeded that of brain, PFC and VC at all doses. High-dose VGB diminished endogenous metabolite production, especially in PFC and VC. GABA significantly increased in all tissues (all doses) except brain; BALA increases were confined to liver and VC; and 4-GBA was prominently increased in brain, PFC and VC (and eye at high dose). Linear correlations between enantiomers and GABA were observed in all tissues, but only in PFC/VC for BALA, 4-GBA, and creatine. Preferential accumulation of the VGB S isomer in eye and VC may provide new insight into VGB ocular toxicity.


Subject(s)
Anticonvulsants/pharmacokinetics , Vigabatrin/pharmacokinetics , Vision Disorders/prevention & control , 4-Aminobutyrate Transaminase/antagonists & inhibitors , Animals , Anticonvulsants/adverse effects , Anticonvulsants/chemistry , Drug Evaluation, Preclinical , Eye/drug effects , Eye/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Animal , Stereoisomerism , Tissue Distribution , Vigabatrin/adverse effects , Vigabatrin/chemistry , Vision Disorders/chemically induced , Visual Cortex/drug effects , Visual Cortex/metabolism , Visual Fields/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL