Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Nutr ; 8: 782912, 2021.
Article in English | MEDLINE | ID: mdl-34926556

ABSTRACT

Plant-derived compounds, without doubt, can have significant medicinal effects since many notable drugs in use today, such as morphine or taxol, were first isolated from botanical sources. When an isolated and purified phytochemical is developed as a pharmaceutical, the uniformity and appropriate use of the product are well defined. Less clear are the benefits and best use of plant-based dietary supplements or other formulations since these products, unlike traditional drugs, are chemically complex and variable in composition, even if derived from a single plant source. This perspective will summarize key points-including the premise of ethnobotanical and preclinical evidence, pharmacokinetics, metabolism, and safety-inherent and unique to the study of botanical dietary supplements to be considered when planning or evaluating botanical clinical trials. Market forces and regulatory frameworks also affect clinical trial design since in the United States, for example, botanical dietary supplements cannot be marketed for disease treatment and submission of information on safety or efficacy is not required. Specific challenges are thus readily apparent both for consumers comparing available products for purchase, as well as for commercially sponsored vs. independent researchers planning clinical trials to evaluate medicinal effects of botanicals. Turmeric dietary supplements, a top selling botanical in the United States and focus of over 400 clinical trials to date, will be used throughout to illustrate both the promise and pitfalls associated with the clinical evaluation of botanicals.

2.
J Agric Food Chem ; 68(22): 6154-6160, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32378408

ABSTRACT

Turmeric extract, a mixture of curcumin and its demethoxy (DMC) and bisdemethoxy (BDMC) isomers, is used as an anti-inflammatory preparation in traditional Asian medicine. Curcumin is considered to be the major bioactive compound in turmeric but less is known about the relative anti-inflammatory potency and mechanism of the other components, their mixture, or the reduced in vivo metabolites. We quantified inhibition of the NF-κB pathway in cells, adduction to a peptide mimicking IκB kinase ß, and the role of cellular glutathione as a scavenger of electrophilic curcuminoid oxidation products, suggested to be the active metabolites. Turmeric extracts (IC50 14.5 ± 2.9 µM), DMC (IC50 12.1 ± 7.2 µM), and BDMC (IC50 8.3 ± 1.6 µM), but not reduced curcumin, inhibited NF-κB similar to curcumin (IC50 18.2 ± 3.9 µM). Peptide adduction was formed with turmeric and DMC but not with BDMC, and this correlated with their oxidative degradation. Inhibition of glutathione biosynthesis enhanced the activity of DMC but not BDMC in the cellular assay. These findings suggest that NF-κB inhibition by curcumin and DMC involves their oxidation to reactive electrophiles, whereas BDMC does not require oxidation. Because it has not been established whether curcumin undergoes oxidative transformation in vivo, oxidation-independent BDMC may be a promising alternative to test in clinical trials.


Subject(s)
Curcuma/chemistry , Diarylheptanoids/chemistry , NF-kappa B/antagonists & inhibitors , Plant Extracts/chemistry , Animals , Cell Line , Curcumin/chemistry , Curcumin/pharmacology , Diarylheptanoids/pharmacology , Humans , Kinetics , NF-kappa B/metabolism , Oxidation-Reduction/drug effects , Plant Extracts/pharmacology
3.
Article in English | MEDLINE | ID: mdl-30972302

ABSTRACT

There is great interest in safe and effective alternative therapies that could benefit patients with inflammatory bowel diseases (IBD). L-arginine (Arg) is a semi-essential amino acid with a variety of physiological effects. In this context, our aim was to investigate the role of dietary Arg in experimental colitis. We used two models of colitis in C57BL/6 mice, the dextran sulfate sodium (DSS) model of injury and repair, and Citrobacter rodentium infection. Animals were given diets containing (1) no Arg (Arg0), 6.4 g/kg (ArgNL), or 24.6 g/kg Arg (ArgHIGH); or (2) the amino acids downstream of Arg: 28 g/kg L-ornithine (OrnHIGH) or 72 g/kg L-proline (ProHIGH). Mice with DSS colitis receiving the ArgHIGH diet had increased levels of Arg, Orn, and Pro in the colon and improved body weight loss, colon length shortening, and histological injury compared to ArgNL and Arg0 diets. Histology was improved in the ArgNL vs. Arg0 group. OrnHIGH or ProHIGH diets did not provide protection. Reduction in colitis with ArgHIGH diet also occurred in C. rodentium-infected mice. Diversity of the intestinal microbiota was significantly enhanced in mice on the ArgHIGH diet compared to the ArgNL or Arg0 diets, with increased abundance of Bacteroidetes and decreased Verrucomicrobia. In conclusion, dietary supplementation of Arg is protective in colitis models. This may occur by restoring overall microbial diversity and Bacteroidetes prevalence. Our data provide a rationale for Arg as an adjunctive therapy in IBD.


Subject(s)
Arginine/administration & dosage , Colitis/pathology , Colon/microbiology , Diet/methods , Enterobacteriaceae Infections/pathology , Gastrointestinal Microbiome , Animals , Citrobacter rodentium/growth & development , Colitis/chemically induced , Colon/pathology , Dextran Sulfate/administration & dosage , Dextran Sulfate/toxicity , Disease Models, Animal , Histocytochemistry , Mice, Inbred C57BL , Treatment Outcome
4.
J Biol Chem ; 292(52): 21243-21252, 2017 12 29.
Article in English | MEDLINE | ID: mdl-29097552

ABSTRACT

The spice turmeric, with its active polyphenol curcumin, has been used as anti-inflammatory remedy in traditional Asian medicine for centuries. Many cellular targets of curcumin have been identified, but how such a wide range of targets can be affected by a single compound is unclear. Here, we identified curcumin as a pro-drug that requires oxidative activation into reactive metabolites to exert anti-inflammatory activities. Synthetic curcumin analogs that undergo oxidative transformation potently inhibited the pro-inflammatory transcription factor nuclear factor κB (NF-κB), whereas stable, non-oxidizable analogs were less active, with a correlation coefficient (R2) of IC50versus log of autoxidation rate of 0.75. Inhibition of glutathione biosynthesis, which protects cells from reactive metabolites, increased the potency of curcumin and decreased the amount of curcumin-glutathione adducts in cells. Oxidative metabolites of curcumin adducted to and inhibited the inhibitor of NF-κB kinase subunit ß (IKKß), an activating kinase upstream of NF-κB. An unstable, alkynyl-tagged curcumin analog yielded abundant adducts with cellular protein that were decreased by pretreatment with curcumin or an unstable analog but not by a stable analog. Bioactivation of curcumin occurred readily in vitro, which may explain the wide range of cellular targets, but if bioactivation is insufficient in vivo, it may also help explain the inconclusive results in human studies with curcumin so far. We conclude that the paradigm of metabolic bioactivation uncovered here should be considered for the evaluation and design of clinical trials of curcumin and other polyphenols of medicinal interest.


Subject(s)
Curcumin/metabolism , Oxidation-Reduction/drug effects , Animals , Anti-Inflammatory Agents/metabolism , Curcumin/pharmacology , Glutathione/drug effects , Glutathione/metabolism , HeLa Cells , Humans , I-kappa B Kinase/drug effects , I-kappa B Kinase/metabolism , Mice , NF-kappa B/drug effects , NF-kappa B/metabolism , Oxidative Stress/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
5.
Free Radic Biol Med ; 110: 176-187, 2017 09.
Article in English | MEDLINE | ID: mdl-28603085

ABSTRACT

Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q10, but due to its highly lipophilic nature, Q10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney.


Subject(s)
Antioxidants/pharmacology , Epithelial Cells/drug effects , Kaempferols/pharmacology , Kidney Tubules, Proximal/drug effects , Polyphenols/pharmacology , Ubiquinone/biosynthesis , Animals , Carbon Isotopes , Cell Line , Epithelial Cells/cytology , Epithelial Cells/enzymology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/enzymology , HEK293 Cells , HL-60 Cells , Hep G2 Cells , Humans , Isotope Labeling , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/enzymology , Mice , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Sirtuin 3/genetics , Sirtuin 3/metabolism
7.
Chem Res Toxicol ; 28(5): 989-96, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25806475

ABSTRACT

Extracts from the rhizome of the turmeric plant are widely consumed as anti-inflammatory dietary supplements. Turmeric extract contains the three curcuminoids, curcumin (≈80% relative abundance), demethoxycurcumin (DMC; ≈15%), and bisdemethoxycurcumin (BDMC; ≈5%). A distinct feature of pure curcumin is its instability at physiological pH, resulting in rapid autoxidation to a bicyclopentadione within 10-15 min. Here, we describe oxidative transformation of turmeric extract, DMC, and BDMC and the identification of their oxidation products using LC-MS and NMR analyses. DMC autoxidized over the course of 24 h to the expected bicyclopentadione diastereomers. BDMC was resistant to autoxidation, and oxidative transformation required catalysis by horseradish peroxidase and H2O2 or potassium ferricyanide. The product of BDMC oxidation was a stable spiroepoxide that was equivalent to a reaction intermediate in the autoxidation of curcumin. The ability of DMC and BDMC to poison recombinant human topoisomerase IIα was significantly increased in the presence of potassium ferricyanide, indicating that oxidative transformation was required to achieve full DNA cleavage activity. DMC and BDMC are less prone to autoxidation than curcumin and contribute to the enhanced stability of turmeric extract at physiological pH. Their oxidative metabolites may contribute to the biological effects of turmeric extract.


Subject(s)
Antigens, Neoplasm/metabolism , Curcuma/toxicity , Curcumin/analogs & derivatives , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Plant Extracts/toxicity , Antigens, Neoplasm/chemistry , Curcuma/chemistry , Curcuma/metabolism , Curcumin/chemistry , Curcumin/metabolism , Curcumin/toxicity , DNA Cleavage/drug effects , DNA Topoisomerases, Type II/chemistry , DNA-Binding Proteins/chemistry , Diarylheptanoids , Epoxy Compounds/chemistry , Epoxy Compounds/metabolism , Epoxy Compounds/toxicity , Humans , Oxidation-Reduction , Plant Extracts/chemistry , Plant Extracts/metabolism
8.
J Agric Food Chem ; 63(35): 7606-14, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-25817068

ABSTRACT

Curcumin is the main bioactive ingredient in turmeric extract and widely consumed as part of the spice mix curry or as a dietary supplement. Turmeric has a long history of therapeutic application in traditional Asian medicine. Biomedical studies conducted in the past two decades have identified a large number of cellular targets and effects of curcumin. In vitro curcumin rapidly degrades in an autoxidative transformation to diverse chemical species, the formation of which has only recently been appreciated. This paper discusses how the degradation and metabolism of curcumin, through products and their mechanism of formation, provide a basis for the interpretation of preclinical data and clinical studies. It is suggested that the previously unrecognized diversity of its degradation products could be an important factor in explaining the polypharmacology of curcumin.


Subject(s)
Curcuma/chemistry , Curcumin/chemistry , Plant Extracts/chemistry , Animals , Curcuma/metabolism , Curcumin/metabolism , Humans , Molecular Structure , Plant Extracts/metabolism
10.
Biochemistry ; 52(1): 221-7, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23253398

ABSTRACT

The polyphenol curcumin is the principal flavor and color component of the spice turmeric. Beyond its culinary uses, curcumin is believed to positively impact human health and displays antioxidant, anti-inflammatory, antibacterial, and chemopreventive properties. It also is in clinical trials as an anticancer agent. In aqueous solution at physiological pH, curcumin undergoes spontaneous autoxidation that is enhanced by oxidizing agents. The reaction proceeds through a series of quinone methide and other reactive intermediates to form a final dioxygenated bicyclopentadione product. Several naturally occurring polyphenols that can form quinones have been shown to act as topoisomerase II poisons (i.e., they increase levels of topoisomerase II-mediated DNA cleavage). Because several of these compounds have chemopreventive properties, we determined the effects of curcumin, its oxidative metabolites, and structurally related degradation products (vanillin, ferulic acid, and feruloylmethane) on the DNA cleavage activities of human topoisomerase IIα and IIß. Intermediates in the curcumin oxidation pathway increased the level of DNA scission mediated by both enzymes ~4-5-fold. In contrast, curcumin and the bicyclopentadione, as well as vanillin, ferulic acid, and feruloylmethane, had no effect on DNA cleavage. As found for other quinone-based compounds, curcumin oxidation intermediates acted as redox-dependent (as opposed to interfacial) topoisomerase II poisons. Finally, under conditions that promote oxidation, the dietary spice turmeric enhanced topoisomerase II-mediated DNA cleavage. Thus, even within the more complex spice formulation, oxidized curcumin intermediates appear to function as topoisomerase II poisons.


Subject(s)
Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Curcumin/metabolism , Curcumin/pharmacology , DNA Cleavage/drug effects , DNA Topoisomerases, Type II/metabolism , Antineoplastic Agents/chemistry , Coloring Agents/chemistry , Coloring Agents/metabolism , Coloring Agents/pharmacology , Curcuma/chemistry , Curcuma/metabolism , Curcumin/chemistry , Humans , Oxidation-Reduction , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology
11.
Mol Nutr Food Res ; 49(1): 7-30, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15580660

ABSTRACT

Our understanding of the role of vitamin E in human nutrition, health, and disease has broadened and changed over the past two decades. Viewed initially as nature's most potent lipid-soluble antioxidant (and discovered for its crucial role in mammalian reproduction) we have now come to realize that vitamin E action has many more facets, depending on the physiological context. Although mainly acting as an antioxidant, vitamin E can also be a pro-oxidant; it can even have nonantioxidant functions: as a signaling molecule, as a regulator of gene expression, and, possibly, in the prevention of cancer and atherosclerosis. Since the term vitamin E encompasses a group of eight structurally related tocopherols and tocotrienols, individual isomers have different propensities with respect to these novel, nontraditional roles. The particular beneficial effects of the individual isomers have to be considered when dissecting the physiological impact of dietary vitamin E or supplements (mainly containing only the alpha-tocopherol isomer) in clinical trials. These considerations are also relevant for the design of transgenic crop plants with the goal of enhancing vitamin E content because an engineered biosynthetic pathway may be biased toward formation of one isomer. In contrast to the tremendous recent advances in knowledge of vitamin E chemistry and biology, there is little hard evidence from clinical and epidemiologic studies on the beneficial effects of supplementation with vitamin E beyond the essential requirement.


Subject(s)
Vitamin E/chemistry , Vitamin E/physiology , Animals , Antioxidants , Arteriosclerosis , Biological Transport , Fatty Acids/chemistry , Gene Expression Regulation , Humans , Kinetics , Lipoproteins, LDL/chemistry , Neoplasms , Oxidants , Oxidation-Reduction , Plants/chemistry , Vitamin E/pharmacokinetics , Vitamin E Deficiency , alpha-Tocopherol/metabolism
12.
Proc Natl Acad Sci U S A ; 100(16): 9162-7, 2003 Aug 05.
Article in English | MEDLINE | ID: mdl-12881489

ABSTRACT

Lipoxygenase (LOX) enzymes form fatty acid hydroperoxides used in membrane remodeling and cell signaling. Mammalian epidermal LOX type 3 (eLOX3) is distinctive in totally lacking this typical oxygenase activity. Surprisingly, genetic evidence has linked mutations in eLOX3 or a colocalizing enzyme, 12R-LOX, to disruption of the normal permeability barrier of the skin [Jobard, F., Lefèvre, C., Karaduman, A., Blanchet-Bardon, C., Emre, S., Weissenbach, J., Ozgüc, M., Lathrop, M., Prud'homme, J. F. & Fischer, J. (2002) Hum. Mol. Genet. 11, 107-113]. Herein we identify a logical link of the biochemistry to the genetics. eLOX3 functions as a hydroperoxide isomerase (epoxyalcohol synthase) by using the product of 12R-LOX as the preferred substrate. 12R-Hydroperoxyeicosatetraenoic acid (12R-HPETE) is converted to 8R-hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid, one of the isomers of hepoxilin A3, and to 12-ketoeicosatetraenoic acid in a 2:1 ratio. Other hydroperoxides, including 8R-HPETE, 12S-HPETE, and 15S-HPETE, as well as the 13S- and 13R-hydroperoxides of linoleic acid are converted less efficiently. Mass spectrometric analysis of the epoxyalcohol formed from [18O]15S-HPETE showed that both hydroperoxy oxygens are retained in the product. We propose that the ferrous form of eLOX3 initiates a redox cycle, unprecedented among LOX in being autocatalytic, in which the hydroperoxy substrate is isomerized to the epoxyalcohol or keto product. Our results provide strong biochemical evidence for a functional linkage of 12R-LOX and eLOX3 and clues into skin biochemistry and the etiology of ichthyosiform diseases in humans.


Subject(s)
Hydrogen Peroxide/metabolism , Intramolecular Oxidoreductases/chemistry , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/physiology , Lipoxygenase/chemistry , Skin/enzymology , Catalysis , Cell Differentiation , Chromatography, High Pressure Liquid , Circular Dichroism , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Gas Chromatography-Mass Spectrometry , Humans , Keratinocytes/metabolism , Kinetics , Magnetic Resonance Spectroscopy , Masoprocol/chemistry , Mass Spectrometry , Models, Chemical , Mutation , Oxidation-Reduction , Signal Transduction , Skin/cytology
SELECTION OF CITATIONS
SEARCH DETAIL