Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Vis Exp ; (123)2017 05 10.
Article in English | MEDLINE | ID: mdl-28518084

ABSTRACT

Chronic or neuropathic trigeminal facial pain can be challenging to treat. Neurosurgical procedures should be applied when conservative treatment fails. Neuromodulation techniques for chronic facial pain include deep brain stimulation and motor cortex stimulation, which are complex to perform. Subcutaneous nerve field stimulation is certified for chronic back pain and is the least invasive form of neuromodulation. We applied this technique to treat chronic and neuropathic trigeminal pain as an individual therapy concept. First, trial stimulation is performed. Subcutaneous leads are placed in the painful trigeminal dermatome under local anesthesia. The leads are connected to an external neurostimulator that applies constant stimulation. Patients undergo a 12 day outpatient trial to assess the effect of the stimulation. Electrodes are removed after the trial. If the patient reports pain reduction of at least 50% in intensity and/or attack frequency, a reduction in medication or increase in quality of life, permanent implantation is scheduled. New electrodes are implanted under general anesthesia and are subcutaneously tunneled to an infraclavicular internal pulse generator. Patients are able to turn stimulation on and off and to increase or decrease the stimulation amplitude as needed. This technique represents a minimal invasive alternative to other more invasive means of neuromodulation for trigeminal pain such as motor cortex stimulation or deep brain stimulation.


Subject(s)
Electric Stimulation Therapy/methods , Facial Pain/therapy , Neuralgia/therapy , Trigeminal Nerve , Trigeminal Neuralgia/therapy , Adult , Aged , Aged, 80 and over , Analgesia, Patient-Controlled , Electrodes, Implanted , Female , Humans , Male , Middle Aged , Pain Measurement , Postoperative Care , Quality of Life , Treatment Outcome
2.
Acta Neurochir (Wien) ; 158(9): 1767-74, 2016 09.
Article in English | MEDLINE | ID: mdl-27372299

ABSTRACT

BACKGROUND: Neurosurgical pain management of drug-resistant trigeminal neuralgia (TN) is highly challenging. Microvascular decompression is a first-line neurosurgical approach for classical TN with neurovascular conflict, but can show clinical relapse despite proper decompression. Second-line destructive techniques like radiofrequency thermocoagulation have become reluctantly used due to their potential for irreversible side effects. Subcutaneous peripheral nerve field stimulation (sPNFS) is a minimally invasive neuromodulatory technique which has been shown to be effective for chronic localised pain conditions. Reports on sPNFS for the treatment of trigeminal pain (sTNFS) are still sparse and primarily focused on pain intensity as outcome measure. Detailed data on the impact of sTNFS on attack frequency are currently not available. METHODS: Patients were classified according to the International Headache Society classification (ICHD-3-beta). Three patients had classical TN without (n = 3) and another three TN with concomitant persistent facial pain (n = 3). Two patients suffered from post-herpetic trigeminal neuropathy (n = 2). All eight patients underwent a trial stimulation of at least 7 days with subcutaneous leads in the affected trigeminal area connected to an external neurostimulator. Of those, six patients received permanent implantation of a neurostimulator. During the follow-up (6-29 months, mean 15.2), VAS-scores, attack frequencies, oral drug intake, complications and side effects were documented. RESULTS: Seven out of eight patients responded to sTNFS (i.e. ≥50 % pain reduction) during the test trial. The pain intensity (according to VAS) was reduced by 83 ± 16 % (mean ± SD) and the number of attacks decreased by 73 ± 26 % (mean ± SD). Five out of six patients were able to reduce or stop pain medication. One patient developed device infection. Two patients developed stimulation-related side effects which could be resolved by reprogramming. CONCLUSIONS: Treatment by sTNFS is a beneficial option for patients with refractory trigeminal pain. Prospective randomised trials are required to systematically evaluate efficacy rates and safety of this low-invasive neurosurgical technique.


Subject(s)
Electric Stimulation Therapy/methods , Trigeminal Nerve , Trigeminal Neuralgia/therapy , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged
3.
J Headache Pain ; 16: 57, 2015.
Article in English | MEDLINE | ID: mdl-26109436

ABSTRACT

BACKGROUND: The capsaicin and heat responsive ion channel TRPV1 is expressed on trigeminal nociceptive neurons and has been implicated in the pathophysiology of migraine attacks. Here we investigate the efficacy of two TRPV1 channel antagonists in blocking trigeminal activation using two in vivo models of migraine. METHODS: Male Sprague-Dawley rats were used to study the effects of the TRPV1 antagonists JNJ-38893777 and JNJ-17203212 on trigeminal activation. Expression of the immediate early gene c-fos was measured following intracisternal application of inflammatory soup. In a second model, CGRP release into the external jugular vein was determined following injection of capsaicin into the carotid artery. RESULTS: Inflammatory up-regulation of c-fos in the trigeminal brain stem complex was dose-dependently and significantly reduced by both TRPV1 antagonists. Capsaicin-induced CGRP release was attenuated by JNJ-38893777 only in higher dosage. JNJ-17203212 was effective in all doses and fully abolished CGRP release in a time and dose-dependent manner. CONCLUSION: Our results describe two TRPV1 antagonists that are effective in two in vivo models of migraine. These results suggest that TRPV1 may play a role in the pathophysiological mechanisms, which are relevant to migraine.


Subject(s)
Aminopyridines/therapeutic use , Disease Models, Animal , Migraine Disorders/drug therapy , Piperazines/therapeutic use , TRPV Cation Channels/antagonists & inhibitors , Aminopyridines/pharmacology , Animals , Capsaicin/toxicity , Dose-Response Relationship, Drug , Genes, fos/drug effects , Male , Migraine Disorders/chemically induced , Migraine Disorders/metabolism , Piperazines/pharmacology , Rats , Rats, Sprague-Dawley , Treatment Outcome , Up-Regulation/drug effects
4.
J Neurol ; 254(6): 789-96, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17351723

ABSTRACT

For decades, serotonin has been speculated to play a major role in migraine pathophysiology. The central serotonergic system is located in the raphe nuclei and the adjacent reticular formation in the brainstem. Recently, radioligands targeting the brain serotonin transport protein (SERT) have been developed. We used the highly specific SERT-radioligand (123)I-ADAM [2-((2-((dimethylamino) methyl)phenyl)thio)-5-iodophenylamine] to test the hypothesis of the mesopontine serotonergic system being involved in the pathophysiology of migraine. Nineteen migraine patients and 10 healthy, age- and sex-matched controls were enrolled. The neuroimaging study was performed interictally during the pain-free interval. Single Photon Emission Computed Tomography (SPECT)-images were coregistered with MRI-scans. Region of interest (ROI)-analysis revealed a highly significant increase of (123)I-ADAM uptake in the mesopontine brainstem of migraineurs (p < 0.001). In contrast, (123)IADAM uptake in the thalamus did not differ significantly between migraineurs and controls. Our study demonstrates for the first time a significant increase of brainstem SERT-availability in migraineurs, suggesting a dysregulation of the brainstem serotonergic system. It remains to be elucidated whether the altered SERT-availability is causally related to migraine pathophysiology or whether it reflects secondary pathophysiological mechanisms.


Subject(s)
Brain Stem/metabolism , Brain Stem/physiopathology , Migraine Disorders/metabolism , Migraine Disorders/physiopathology , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin/metabolism , Adult , Biomarkers/analysis , Biomarkers/metabolism , Brain Chemistry/physiology , Brain Stem/diagnostic imaging , Cinanserin , Female , Humans , Iodine Radioisotopes , Male , Mesencephalon/diagnostic imaging , Mesencephalon/metabolism , Mesencephalon/physiopathology , Middle Aged , Migraine Disorders/diagnostic imaging , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism , Neural Pathways/physiopathology , Pons/diagnostic imaging , Pons/metabolism , Pons/physiopathology , Raphe Nuclei/diagnostic imaging , Raphe Nuclei/metabolism , Raphe Nuclei/physiopathology , Receptors, Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/analysis , Thalamus/diagnostic imaging , Thalamus/metabolism , Thalamus/physiopathology , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL