Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Microbiol Res ; 199: 10-18, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28454705

ABSTRACT

The budding yeast S. cerevisiae is widely used as a eukaryotic model organism to elucidate the mechanism of action of low molecular weight compounds. This report describes the development of two high throughput screening methods based on cell viability either by monitoring the reduction of alamarBlue® (resazurin) or by direct optical measurement of cell growth. Both methods can be miniaturized to allow screening of large numbers of samples, and can be performed using S. cerevisiae in 384 and 1536-well format. The alamarBlue® approach achieves Z' values of >0.7 with signal to basal ratios of >6.5, and around 1.1 million low molecular weight compounds were screened, identifying approximately 25,000 primary hits. Dose response curves generated for a subset (1930) using both alamarBlue® and optical density methods showed significant overlap. In genome-wide haploinsufficiency profiling (HIP), 572 of these hits demonstrated a diverse mechanism of action, affecting >25% of all yeast strains.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays/methods , Saccharomyces cerevisiae/chemistry , Drug Evaluation, Preclinical/methods , Models, Theoretical , Oxazines/analysis , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomycetales/chemistry , Saccharomycetales/drug effects , Saccharomycetales/growth & development , Xanthenes/analysis
2.
Cell Host Microbe ; 11(6): 654-63, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22704625

ABSTRACT

With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited.


Subject(s)
Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Fungi/chemistry , Isocoumarins/pharmacology , Lysine-tRNA Ligase/antagonists & inhibitors , Plasmodium falciparum/enzymology , Antimalarials/isolation & purification , Cell Line , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/isolation & purification , Humans , Inhibitory Concentration 50 , Isocoumarins/isolation & purification , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Protein Biosynthesis/drug effects , Protozoan Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL