Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Type of study
Language
Affiliation country
Publication year range
1.
Biomaterials ; 217: 119293, 2019 10.
Article in English | MEDLINE | ID: mdl-31276948

ABSTRACT

Interstitial cystitis (IC), also known as painful bladder syndrome, is a debilitating chronic condition with many patients failing to respond to current treatment options. Rapid clearance, mucosal coating, and tight epithelium create strong natural barriers that reduce the effectiveness of many pharmacological interventions in the bladder. Intravesical drug delivery (IDD) is the administration of therapeutic compounds or devices to the urinary bladder via a urethral catheter. Previous work in improving IDD for IC has focused on the sustained delivery of analgesics within the bladder and other small molecule drugs which do not address underlying inflammation and bladder damage. Therapeutic glycosaminoglycans (GAG) function by restoring the mucosal barrier within the bladder, promoting healing responses, and preventing irritating solutes from reaching the bladder wall. There is an unmet medical need for a therapy that provides both acute relief of symptoms while alleviating underlying physiological sources of inflammation and promoting healing within the urothelium. Semi-synthetic glycosaminoglycan ethers (SAGE) are an emerging class of therapeutic GAG with intrinsic anti-inflammatory and analgesic properties. To reduce SAGE clearance and enhance its accumulation in the bladder, we developed a silk-elastinlike protein polymer (SELP) based system to enhance SAGE IDD. We evaluated in vitro release kinetics, rheological properties, impact on bladder function, pain response, and bladder inflammation and compared their effectiveness to other temperature-responsive polymers including Poloxamer 407 and poly(lactic-co-glycolic acid)-poly(ethylene glycol). SAGE delivered via SELP-enhanced intravesical delivery substantially improved SAGE accumulation in the urothelium, provided a sustained analgesic effect 24 h after administration, and reduced inflammation.


Subject(s)
Cystitis, Interstitial/drug therapy , Drug Delivery Systems , Elastin/chemistry , Glycosaminoglycans/administration & dosage , Glycosaminoglycans/therapeutic use , Polymers/chemistry , Silk/chemistry , Temperature , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Antimicrobial Cationic Peptides , Behavior, Animal , Cathelicidins , Cystitis, Interstitial/pathology , Cystitis, Interstitial/physiopathology , Delayed-Action Preparations/therapeutic use , Disease Models, Animal , Drug Liberation , Female , Gels , Mice, Inbred C57BL , Urothelium/pathology
2.
J Control Release ; 263: 46-56, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28232224

ABSTRACT

Radiation-induced proctitis (RIP) is the most common clinical adverse effect for patients receiving radiotherapy as part of the standard course of treatment for ovarian, prostate, colon, and bladder cancers. RIP limits radiation dosage, interrupts treatment, and lowers patients' quality of life. A prophylactic treatment that protects the gastrointestinal tract from deleterious effects of radiotherapy will significantly improve patient quality of life and may allow for higher and more regular doses of radiation therapy. Semi-synthetic glycosaminoglycan (GAG), generated from the sulfation of hyaluronic acid, are anti-inflammatory but have difficulty achieving therapeutic levels in many tissues. To enhance the delivery of GAG, we created an in situ gelling rectal delivery system using silk-elastinlike protein polymers (SELPs). Using solutions of SELP 815K (which contains 6 repeats of blocks comprised of 8 silk-like units, 15 elastin-like units, and 1 lysine-substituted elastin-like unit) with GAG GM-0111, we created an injectable delivery platform that transitioned in <5min from a liquid at room temperature to a hydrogel at body temperature. The hydrogels released 50% of their payload within 30min and enhanced the accumulation of GAG in the rectum compared to traditional enema-based delivery. Using a murine model of radiation-induced proctitis, the prophylactic delivery of a single dose of GAG from a SELP matrix administered prior to irradiation significantly reduced radiation-induced pain after 3, 7, and 21days by 53±4%, 47±10%, and 12±6%, respectively. Matrix-mediated delivery of GAG by SELP represents an innovative method for more effective treatment of RIP and promises to improve quality of life of cancer patients by allowing higher radiotherapy doses with improved safety.


Subject(s)
Glycosaminoglycans/administration & dosage , Hydrogels/administration & dosage , Pain/drug therapy , Proctitis/drug therapy , Proteins/administration & dosage , Radiation Injuries, Experimental/drug therapy , Animals , Behavior, Animal/drug effects , Drug Liberation , Enema , Female , Glycosaminoglycans/chemistry , Glycosaminoglycans/pharmacokinetics , Glycosaminoglycans/therapeutic use , Hydrogels/chemistry , Hydrogels/pharmacokinetics , Hydrogels/therapeutic use , Mice , Pain/etiology , Pain/metabolism , Pain/prevention & control , Proctitis/etiology , Proctitis/metabolism , Proctitis/prevention & control , Proteins/chemistry , Proteins/pharmacokinetics , Proteins/therapeutic use , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/prevention & control , Rectum/metabolism , Rheology , X-Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL