Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
JCI Insight ; 5(7)2020 04 09.
Article in English | MEDLINE | ID: mdl-32271166

ABSTRACT

Systemic cytokine release and on-target/off-tumor toxicity to normal tissues are the main adverse effects limiting the clinical utility of T cell-redirecting therapies. This study was designed to determine how binding affinity for CD3 and tumor target HER2 impact the efficacy and nonclinical safety of anti-HER2/CD3 T cell-dependent antibodies (TDBs). Affinity was found to be a major determinant for the overall tolerability. Higher affinity for CD3 associated with rapidly elevated peripheral cytokine concentrations, weight loss in mice, and poor tolerability in cynomolgus monkeys. A TDB with lower CD3 affinity was better tolerated in cynomolgus monkeys compared with a higher CD3-affinity TDB. In contrast to tolerability, T cell binding affinity had only limited impact on in vitro and in vivo antitumor activity. High affinity for HER2 was critical for the tumor-killing activity of anti-HER2/CD3 TDBs, but higher HER2 affinity also associated with a more severe toxicity profile, including cytokine release and damage to HER2-expressing tissues. The tolerability of the anti-HER2/CD3 was improved by implementing a dose-fractionation strategy. Fine-tuning the affinities for both the tumor target and CD3 is likely a valuable strategy for achieving maximal therapeutic index of CD3 bispecific antibodies.


Subject(s)
Antibodies, Bispecific/immunology , Antibody Affinity , Antineoplastic Agents, Immunological/immunology , Receptor, ErbB-2/immunology , Animals , Antibodies, Bispecific/chemistry , Antineoplastic Agents, Immunological/chemistry , CD3 Complex/chemistry , CHO Cells , Cricetulus , Drug Evaluation, Preclinical , Humans , Macaca fascicularis , Receptor, ErbB-2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL