Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 27(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35630720

ABSTRACT

DRIFT, HPLC-MS, and SPME-GC/MS analyses were used to unveil the structure and the main functional compounds of red (blood) orange (Citrus sinensis) and bitter orange (Citrus aurantium). The IntegroPectin samples show evidence that these new citrus pectins are comprised of pectin rich in RG-I hairy regions functionalized with citrus biophenols, chiefly flavonoids and volatile molecules, mostly terpenes. Remarkably, IntegroPectin from the peel of fresh bitter oranges is the first high methoxyl citrus pectin extracted via hydrodynamic cavitation, whereas the red orange IntegroPectin is a low methoxyl pectin. C. aurantium IntegroPectin has a uniquely high concentration of adsorbed flavonoids, especially the flavanone glycosides hesperidin, naringin, and eriocitrin.


Subject(s)
Citrus sinensis , Citrus , Hesperidin , Citrus/chemistry , Citrus sinensis/chemistry , Flavonoids/analysis , Pectins
2.
Int J Mol Sci ; 22(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34502276

ABSTRACT

Tested in vitro on SH-SY5Y neuroblastoma cells, grapefruit IntegroPectin is a powerful protective, antioxidant and antiproliferative agent. The strong antioxidant properties of this new citrus pectin, and its ability to preserve mitochondrial membrane potential and morphology, severely impaired in neurodegenerative disorders, make it an attractive therapeutic and preventive agent for the treatment of oxidative stress-associated brain disorders. Similarly, the ability of this pectic polymer rich in RG-I regions, as well as in naringin, linalool, linalool oxide and limonene adsorbed at the outer surface, to inhibit cell proliferation or even kill, at high doses, neoplastic cells may have opened up new therapeutic strategies in cancer research. In order to take full advantage of its vast therapeutic and preventive potential, detailed studies of the molecular mechanism involved in the antiproliferative and neuroprotective of this IntegroPectin are urgently needed.


Subject(s)
Antioxidants/pharmacology , Citrus paradisi/chemistry , Neuroprotective Agents/pharmacology , Pectins/chemistry , Pectins/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Neuroblastoma/drug therapy , Neuroblastoma/pathology , X-Ray Diffraction
3.
Antibiotics (Basel) ; 9(9)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911640

ABSTRACT

Grapefruit and lemon pectin obtained from the respective waste citrus peels via hydrodynamic cavitation in water only are powerful, broad-scope antimicrobials against Gram-negative and -positive bacteria. Dubbed IntegroPectin, these pectic polymers functionalized with citrus flavonoids and terpenes show superior antimicrobial activity when compared to commercial citrus pectin. Similar to commercial pectin, lemon IntegroPectin determined ca. 3-log reduction in Staphylococcus aureus cells, while an enhanced activity of commercial citrus pectin was detected in the case of Pseudomonas aeruginosa cells with a minimal bactericidal concentration (MBC) of 15 mg mL-1. Although grapefruit and lemon IntegroPectin share equal MBC in the case of P. aeruginosa cells, grapefruit IntegroPectin shows boosted activity upon exposure of S. aureus cells with a 40 mg mL-1 biopolymer concentration affording complete killing of the bacterial cells. Insights into the mechanism of action of these biocompatible antimicrobials and their effect on bacterial cells, at the morphological level, were obtained indirectly through Fourier Transform Infrared spectroscopy and directly through scanning electron microscopy. In the era of antimicrobial resistance, these results are of great societal and sanitary relevance since citrus IntegroPectin biomaterials are also devoid of cytotoxic activity, as already shown for lemon IntegroPectin, opening the route to the development of new medical treatments of polymicrobial infections unlikely to develop drug resistance.

4.
ChemMedChem ; 15(23): 2228-2235, 2020 12 03.
Article in English | MEDLINE | ID: mdl-32857470

ABSTRACT

First reported in the late 1930s and partly explained in 1970, the antibacterial activity of pectin remained almost ignored until the late 1990s. The concomitant emergence of research on natural antibacterials and new usages of pectin polysaccharides, including those in medicine widely researched in Russia, has led to a renaissance of research into the physiological properties of this uniquely versatile polysaccharide ubiquitous in plants and fruits. By collecting scattered information, this study provides an updated overview of the subtle factors affecting the behaviour of pectin as an antimicrobial. Less-degraded pectin extracted by acid-free routes, we argue in the conclusions, will soon find applications from new treatments for polymicrobial infections to use as an implantable biomaterial in tissue and bone engineering.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biocompatible Materials/pharmacology , Pectins/pharmacology , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemistry , Microbial Sensitivity Tests , Pectins/chemistry
5.
ChemistryOpen ; 9(5): 628-630, 2020 05.
Article in English | MEDLINE | ID: mdl-32489768

ABSTRACT

Pectin extracted via hydrodynamic cavitation in water only from waste lemon peel and further isolated via freeze drying displays significant antibacterial activity against Staphylococcus aureus, a Gram positive pathogen which easily contaminates food. The antibacterial effect of the new IntegroPectin is largely superior to that of commercial citrus pectin, opening the way to advanced applications of a new bioproduct now obtainable in large amounts and at low cost from citrus juice industry's waste.


Subject(s)
Anti-Bacterial Agents/chemistry , Citrus/chemistry , Fruit/chemistry , Pectins/chemistry , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Fruit and Vegetable Juices , Humans , Hydrodynamics , Pectins/pharmacology , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , Waste Products/analysis
SELECTION OF CITATIONS
SEARCH DETAIL