Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240419

ABSTRACT

Glioblastoma (GBM) is a poorly treatable disease due to the fast development of tumor recurrences and high resistance to chemo- and radiotherapy. To overcome the highly adaptive behavior of GBMs, especially multimodal therapeutic approaches also including natural adjuvants have been investigated. However, despite increased efficiency, some GBM cells are still able to survive these advanced treatment regimens. Given this, the present study evaluates representative chemoresistance mechanisms of surviving human GBM primary cells in a complex in vitro co-culture model upon sequential application of temozolomide (TMZ) combined with AT101, the R(-) enantiomer of the naturally occurring cottonseed-derived gossypol. Treatment with TMZ+AT101/AT101, although highly efficient, yielded a predominance of phosphatidylserine-positive GBM cells over time. Analysis of the intracellular effects revealed phosphorylation of AKT, mTOR, and GSK3ß, resulting in the induction of various pro-tumorigenic genes in surviving GBM cells. A Torin2-mediated mTOR inhibition combined with TMZ+AT101/AT101 partly counteracted the observed TMZ+AT101/AT101-associated effects. Interestingly, treatment with TMZ+AT101/AT101 concomitantly changed the amount and composition of extracellular vesicles released from surviving GBM cells. Taken together, our analyses revealed that even when chemotherapeutic agents with different effector mechanisms are combined, a variety of chemoresistance mechanisms of surviving GBM cells must be taken into account.


Subject(s)
Brain Neoplasms , Glioblastoma , Gossypol , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Gossypol/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , TOR Serine-Threonine Kinases , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
2.
Carbohydr Res ; 490: 107903, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32171073

ABSTRACT

This study intends to investigate the inhibitory potential of different plant derived saccharides on cell migration and adhesion of pancreatic ductal adenocarcinoma (PDAC) cells to microvascular liver endothelium, particularly considering the role of transmembranous galectin-3. PDAC cell lines PancTu1 and Panc1 were characterized by considerable (transmembranous) galectin-3 (Gal3) expression. SiRNA mediated Gal3 knockdown as well as treatment with differentially processed pectins and arabinogalactan-proteins (AGPs) did not impact on cell migration of either PDAC cell line. In contrast, Gal3 knockdown reduced adhesion of PDAC cells to the liver endothelial cell line TMNK-1 being more pronounced in Panc1 cells. Similarly, plant derived substances did not impact cell adhesion of PancTu1 cells while partially hydrolyzed citrus pectin (MCP), pectinase-treated MCP (MCPPec) and partially hydrolized AGP (AGPTFA) clearly diminished adhesive properties of Panc1 cells. MCPPec or AGPTFA could not further intensify the adhesion reducing effect of galectin-3 knockdown, indicating that these plant derived polysaccharides are able to inhibit PDAC cell adhesion to liver endothelial cells in a galectin-3 dependent manner. Overall, these data suggest an inhibitory potential of plant derived processed saccharides which have undergone chemical modification in impairing PDAC cell adhesion to liver endothelium.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Citrus/chemistry , Galectin 3/metabolism , Mucoproteins/pharmacology , Pancreatic Neoplasms/metabolism , Pectins/pharmacology , Blood Proteins , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Galectin 3/genetics , Galectins , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Neoplasm Metastasis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Plant Proteins/pharmacology
3.
Free Radic Res ; 53(5): 522-534, 2019 May.
Article in English | MEDLINE | ID: mdl-31117828

ABSTRACT

Physical activity, particularly that, exerted by endurance athletes, impacts the immune status of the human body. Prolonged duration and high-intensity endurance training lead to increased production of reactive oxygen species (ROS) and thereby to oxidative stress. Military combat swimmers (O2-divers) are regularly exposed to hyperbaric hyperoxia (HBO) in addition to intensive endurance training intervals. They are, therefore, exposed to extreme levels of oxidative stress. Several studies support that the intensity of oxidative stress essentially determines the effect on immune status. The aim of this study was to comparatively characterise peripheral blood mononuclear cells (PBMCs) of O2-divers (military combat swimmers), endurance athletes (amateur triathletes), and healthy control volunteers with respect to DNA fragmentation, immune status and signs of inflammation. Furthermore, it was investigated how PBMCs from these groups responded acutely to exposure to HBO. We showed that DNA fragmentation was comparable in PBMCs of all three groups under basal conditions directly after HBO exposure. However, significantly higher DNA fragmentation was observed in O2-divers 18 hours after HBO, possibly indicating a slower recovery. O2-divers also exhibited a proinflammatory immune status exemplified by an elevated number of CD4+CD25+ T cells, elevated expression of proinflammatory cytokine IL-12, and diminished expression of anti-inflammatory TGF-ß1 compared to controls. Supported by a decreased basal gene expression and prolonged upregulation of anti-oxidative HO-1, these data suggest that higher oxidative stress levels, as present under intermitted hyperbaric hyperoxia, e.g. through oxygen diving, promote a higher inflammatory immune status than oxidative stress through endurance training alone.


Subject(s)
Athletes , Diving/physiology , Hyperoxia/immunology , Immunity, Innate/drug effects , Oxygen/pharmacology , Physical Endurance/immunology , Adult , Case-Control Studies , Comet Assay , DNA Fragmentation , Gene Expression Regulation , Heme Oxygenase-1/genetics , Heme Oxygenase-1/immunology , Humans , Hyperbaric Oxygenation/methods , Hyperoxia/genetics , Hyperoxia/physiopathology , Inflammation , Interleukin-12/genetics , Interleukin-12/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Oxidative Stress/immunology , Oxygen/immunology , Physical Endurance/genetics , Physical Exertion/genetics , Physical Exertion/immunology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/immunology
4.
Mar Drugs ; 16(12)2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30551573

ABSTRACT

The metabolism of seaweeds depends on environmental parameters, the availability of nutrients, and biotic/abiotic stresses; therefore, their chemical composition fluctuates throughout the year. This study investigated seasonal variations in the metabolome of the Baltic Sea brown alga Fucus vesiculosus and its potential relation to the bioactivity profile. By using a definitive screening design (DSD) combined with pressurised liquid extraction (PLE), an optimised protocol was developed to extract algal biomass monthly for a full calendar year. An untargeted metabolomics approach using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MSn)-based molecular networking and manual dereplication was employed. The extracts were simultaneously screened for their in vitro antimicrobial, anticancer/apoptotic, and free radical scavenging activities. 44 compounds were putatively dereplicated in the metabolome. Many compounds were found to vary with the sampling month; phlorotannin total ion count (TIC) was highest in summer, whilst chlorophylls, lipids, and carotenoids peaked in winter and spring. The greatest radical scavenging and apoptotic activities against pancreas cancer cells observed in the summer months were attributed to high phlorotannin TIC. Methicillin-resistant Staphylococcus aureus (MRSA) inhibitory activity was produced year-round without a clear seasonal trend. This is the first study applying DSD-based optimised PLE extraction combined with a metabolome analysis of F. vesiculosus for the identification of seasonal variations in both metabolome and bioactivity.


Subject(s)
Fucus/metabolism , Metabolome , Plant Extracts/pharmacology , Seasons , Seaweed/metabolism , A549 Cells , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/metabolism , Biological Products/pharmacology , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Drug Screening Assays, Antitumor , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/metabolism , Free Radical Scavengers/pharmacology , Fucus/chemistry , Humans , Liquid-Liquid Extraction/instrumentation , Liquid-Liquid Extraction/methods , Metabolomics/instrumentation , Metabolomics/methods , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Pressure , Seaweed/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL