Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Plant Cell Rep ; 36(7): 1137-1157, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28451820

ABSTRACT

KEY MESSAGE: We describe the potato CDPK family and place StCDPK7 as a player in potato response to Phytophthora infestans infection, identifying phenylalanine ammonia lyase as its specific phosphorylation target in vitro. Calcium-dependent protein kinases (CDPKs) decode calcium (Ca2+) signals and activate different signaling pathways involved in hormone signaling, plant growth, development, and both abiotic and biotic stress responses. In this study, we describe the potato CDPK/CRK multigene family; bioinformatic analysis allowed us to identify 20 new CDPK isoforms, three CDPK-related kinases (CRKs), and a CDPK-like kinase. Phylogenetic analysis indicated that 26 StCDPKs can be classified into four groups, whose members are predicted to undergo different acylation patterns and exhibited diverse expression levels in different tissues and in response to various stimuli. With the aim of characterizing those members that are particularly involved in plant-pathogen interaction, we focused on StCDPK7. Tissue expression profile revealed that StCDPK7 transcript levels are high in swollen stolons, roots, and mini tubers. Moreover, its expression is induced upon Phytophthora infestans infection in systemic leaves. Transient expression assays showed that StCDPK7 displays a cytosolic/nuclear localization in spite of having a predicted chloroplast transit peptide. The recombinant protein, StCDPK7:6xHis, is an active Ca2+-dependent protein kinase that can phosphorylate phenylalanine ammonia lyase, an enzyme involved in plant defense response. The analysis of the potato CDPK family provides the first step towards the identification of CDPK isoforms involved in biotic stress. StCDPK7 emerges as a relevant player that could be manipulated to deploy disease resistance in potato crops.


Subject(s)
Phytophthora infestans/physiology , Plant Proteins/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/parasitology , Cell Nucleus/enzymology , Cell Nucleus/metabolism , Cytosol/enzymology , Cytosol/metabolism , Disease Resistance/genetics , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Solanum tuberosum/enzymology
2.
Mol Plant Microbe Interact ; 27(7): 624-37, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24678835

ABSTRACT

Both plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR or NLR) proteins to respond to invading pathogens and activate immune responses. How plant NB-LRR proteins respond to pathogens is poorly understood. We undertook a gain-of-function random mutagenesis screen of the potato NB-LRR immune receptor R3a to study how this protein responds to the effector protein AVR3a from the oomycete pathogen Phytophthora infestans. R3a response can be extended to the stealthy AVR3aEM isoform of the effector while retaining recognition of AVR3aKI. Each one of eight single amino acid mutations is sufficient to expand the R3a response to AVR3aEM and other AVR3a variants. These mutations occur across the R3a protein, from the N terminus to different regions of the LRR domain. Further characterization of these R3a mutants revealed that at least one of them was sensitized, exhibiting a stronger response than the wild-type R3a protein to AVR3aKI. Remarkably, the N336Y mutation, near the R3a nucleotide-binding pocket, conferred response to the effector protein PcAVR3a4 from the vegetable pathogen P. capsici. This work contributes to understanding how NB-LRR receptor specificity can be modulated. Together with knowledge of pathogen effector diversity, this strategy can be exploited to develop synthetic immune receptors.


Subject(s)
Phytophthora/physiology , Plant Proteins/metabolism , Solanum tuberosum/metabolism , Amino Acid Sequence , Amino Acid Substitution , Gene Expression Regulation, Plant/immunology , Models, Molecular , Plant Proteins/chemistry , Plant Proteins/genetics , Solanum tuberosum/immunology , Solanum tuberosum/microbiology
3.
Transgenic Res ; 21(5): 967-82, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22200984

ABSTRACT

Solanum tuberosum ssp. tuberosum (cv. Spunta) was transformed with a chimeric transgene containing the Potato virus Y (PVY) coat protein (CP) sequence. Screening for PVY resistance under greenhouse conditions yielded over 100 independent candidate lines. Successive field testing of selected lines allowed the identification of two genetically stable PVY-resistant lines, SY230 and SY233, which were further evaluated in field trials at different potato-producing regions in Argentina. In total, more than 2,000 individuals from each line were tested along a 6-year period. While no or negligible PVY infection was observed in the transgenic lines, infection rates of control plants were consistently high and reached levels of up to 70-80%. Parallel field studies were performed in virus-free environments to assess the agronomical performance of the selected lines. Tubers collected from these assays exhibited agronomical traits and biochemical compositions indistinguishable from those of the non-transformed Spunta cultivar. In addition, an interspecific out-crossing trial to determine the magnitude of possible natural gene flow between transgenic line SY233 and its wild relative Solanum chacoense was performed. This trial yielded negative results, suggesting an extremely low probability for such an event to occur.


Subject(s)
Disease Resistance , Gene Flow , Plants, Genetically Modified/genetics , Potyvirus/pathogenicity , Solanum tuberosum/genetics , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Argentina , Capsid Proteins/genetics , Capsid Proteins/immunology , Capsid Proteins/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/immunology , Crops, Agricultural/virology , Crosses, Genetic , Genetic Vectors , Plant Diseases/immunology , Plant Diseases/virology , Plants, Genetically Modified/immunology , Plants, Genetically Modified/virology , Potyvirus/genetics , Potyvirus/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Solanaceous Alkaloids/analysis , Solanaceous Alkaloids/metabolism , Solanum tuberosum/immunology , Solanum tuberosum/virology , Transformation, Genetic , Transgenes
4.
Planta ; 235(4): 807-18, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22071556

ABSTRACT

Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of ß-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of ß-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on ß-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased ß-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.


Subject(s)
Glucuronidase/biosynthesis , Plant Proteins/biosynthesis , Plastids/enzymology , Plastids/genetics , Solanum tuberosum/enzymology , Solanum tuberosum/genetics , Gene Expression Regulation, Plant , Glucuronidase/genetics , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Plant Tubers/enzymology , Plant Tubers/genetics , Plants, Genetically Modified , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Nicotiana/enzymology , Nicotiana/genetics , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL