Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Journal
Affiliation country
Publication year range
1.
Nature ; 544(7650): 357-361, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28273061

ABSTRACT

Recent genomic data have revealed multiple interactions between Neanderthals and modern humans, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)-the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.


Subject(s)
DNA, Ancient/analysis , Dental Calculus/chemistry , Diet/history , Food Preferences , Health/history , Neanderthals/microbiology , Neanderthals/psychology , Animals , Belgium , Carnivory , Caves , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Genome, Bacterial/genetics , History, Ancient , Humans , Intestines/microbiology , Meat/history , Methanobrevibacter/genetics , Methanobrevibacter/isolation & purification , Mouth/microbiology , Pan troglodytes/microbiology , Penicillium/chemistry , Perissodactyla , Sheep , Spain , Stomach/microbiology , Symbiosis , Time Factors , Vegetarians/history
2.
Nature ; 534(7606): 200-5, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27135931

ABSTRACT

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.


Subject(s)
Ice Cover , White People/genetics , White People/history , Animals , Biological Evolution , DNA/analysis , DNA/genetics , DNA/isolation & purification , Europe , Female , Founder Effect , Genetics, Population , History, Ancient , Human Migration/history , Humans , Male , Middle East , Neanderthals/genetics , Phylogeny , Population Dynamics , Selection, Genetic , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL